Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Mutations in ERK2 binding sites affect nuclear entry.

Yazicioglu MN, Goad DL, Ranganathan A, Whitehurst AW, Goldsmith EJ, Cobb MH.

J Biol Chem. 2007 Sep 28;282(39):28759-67. Epub 2007 Jul 26.

2.

ERK2 enters the nucleus by a carrier-independent mechanism.

Whitehurst AW, Wilsbacher JL, You Y, Luby-Phelps K, Moore MS, Cobb MH.

Proc Natl Acad Sci U S A. 2002 May 28;99(11):7496-501.

3.

The death effector domain protein PEA-15 prevents nuclear entry of ERK2 by inhibiting required interactions.

Whitehurst AW, Robinson FL, Moore MS, Cobb MH.

J Biol Chem. 2004 Mar 26;279(13):12840-7. Epub 2004 Jan 5.

4.

Extracellular signal-regulated kinase 2 (ERK2) phosphorylation sites and docking domain on the nuclear pore complex protein Tpr cooperatively regulate ERK2-Tpr interaction.

Vomastek T, Iwanicki MP, Burack WR, Tiwari D, Kumar D, Parsons JT, Weber MJ, Nandicoori VK.

Mol Cell Biol. 2008 Nov;28(22):6954-66. doi: 10.1128/MCB.00925-08. Epub 2008 Sep 15.

5.

Reconstitution of the nuclear transport of the MAP kinase ERK2.

Jivan A, Ranganathan A, Cobb MH.

Methods Mol Biol. 2010;661:273-85. doi: 10.1007/978-1-60761-795-2_16.

PMID:
20811989
6.

Epstein-Barr virus protein kinase BGLF4 targets the nucleus through interaction with nucleoporins.

Chang CW, Lee CP, Huang YH, Yang PW, Wang JT, Chen MR.

J Virol. 2012 Aug;86(15):8072-85. doi: 10.1128/JVI.01058-12. Epub 2012 May 23.

7.

Epidermal growth factor receptor and protein kinase C signaling to ERK2: spatiotemporal regulation of ERK2 by dual specificity phosphatases.

Caunt CJ, Rivers CA, Conway-Campbell BL, Norman MR, McArdle CA.

J Biol Chem. 2008 Mar 7;283(10):6241-52. doi: 10.1074/jbc.M706624200. Epub 2008 Jan 3.

9.

Quantitative analysis of ERK2 interactions with substrate proteins: roles for kinase docking domains and activity in determining binding affinity.

Burkhard KA, Chen F, Shapiro P.

J Biol Chem. 2011 Jan 28;286(4):2477-85. doi: 10.1074/jbc.M110.177899. Epub 2010 Nov 22.

10.

Identification of a C-terminal region that is required for the nuclear translocation of ERK2 by passive diffusion.

Shibayama S, Shibata-Seita R, Miura K, Kirino Y, Takishima K.

J Biol Chem. 2002 Oct 4;277(40):37777-82. Epub 2002 Jul 30.

12.

The nuclear import of the human T lymphotropic virus type I (HTLV-1) tax protein is carrier- and energy-independent.

Tsuji T, Sheehy N, Gautier VW, Hayakawa H, Sawa H, Hall WW.

J Biol Chem. 2007 May 4;282(18):13875-83. Epub 2007 Mar 6.

13.
14.

The nuclear localization of ERK2 occurs by mechanisms both independent of and dependent on energy.

Ranganathan A, Yazicioglu MN, Cobb MH.

J Biol Chem. 2006 Jun 9;281(23):15645-52. Epub 2006 Apr 4.

15.

Identification of novel ERK2 substrates through use of an engineered kinase and ATP analogs.

Eblen ST, Kumar NV, Shah K, Henderson MJ, Watts CK, Shokat KM, Weber MJ.

J Biol Chem. 2003 Apr 25;278(17):14926-35. Epub 2003 Feb 19.

16.

The nucleoporin Nup358/RanBP2 promotes nuclear import in a cargo- and transport receptor-specific manner.

Wälde S, Thakar K, Hutten S, Spillner C, Nath A, Rothbauer U, Wiemann S, Kehlenbach RH.

Traffic. 2012 Feb;13(2):218-33. doi: 10.1111/j.1600-0854.2011.01302.x. Epub 2011 Nov 21.

17.

Spatially separate docking sites on ERK2 regulate distinct signaling events in vivo.

Dimitri CA, Dowdle W, MacKeigan JP, Blenis J, Murphy LO.

Curr Biol. 2005 Jul 26;15(14):1319-24.

18.
19.

Importin beta contains a COOH-terminal nucleoporin binding region important for nuclear transport.

Bednenko J, Cingolani G, Gerace L.

J Cell Biol. 2003 Aug 4;162(3):391-401. Epub 2003 Jul 28.

20.
Items per page

Supplemental Content

Write to the Help Desk