Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 916

1.

Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis.

Hirasawa T, Yoshikawa K, Nakakura Y, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S.

J Biotechnol. 2007 Aug 1;131(1):34-44. Epub 2007 May 24.

PMID:
17604866
[PubMed - indexed for MEDLINE]
2.

Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray.

Hirasawa T, Nakakura Y, Yoshikawa K, Ashitani K, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S.

Appl Microbiol Biotechnol. 2006 Apr;70(3):346-57. Epub 2005 Nov 11.

PMID:
16283296
[PubMed - indexed for MEDLINE]
3.

Analysis of adaptation to high ethanol concentration in Saccharomyces cerevisiae using DNA microarray.

Dinh TN, Nagahisa K, Yoshikawa K, Hirasawa T, Furusawa C, Shimizu H.

Bioprocess Biosyst Eng. 2009 Aug;32(5):681-8. doi: 10.1007/s00449-008-0292-7. Epub 2009 Jan 6.

PMID:
19125301
[PubMed - indexed for MEDLINE]
4.

Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae.

Yoshikawa K, Tanaka T, Furusawa C, Nagahisa K, Hirasawa T, Shimizu H.

FEMS Yeast Res. 2009 Feb;9(1):32-44. doi: 10.1111/j.1567-1364.2008.00456.x. Epub 2008 Nov 13.

PMID:
19054128
[PubMed - indexed for MEDLINE]
5.

Extracting the hidden features in saline osmotic tolerance in Saccharomyces cerevisiae from DNA microarray data using the self-organizing map: biosynthesis of amino acids.

Pandey G, Yoshikawa K, Hirasawa T, Nagahisa K, Katakura Y, Furusawa C, Shimizu H, Shioya S.

Appl Microbiol Biotechnol. 2007 May;75(2):415-26. Epub 2007 Jan 30.

PMID:
17262206
[PubMed - indexed for MEDLINE]
6.

Elevated expression of genes under the control of stress response element (STRE) and Msn2p in an ethanol-tolerance sake yeast Kyokai no. 11.

Watanabe M, Tamura K, Magbanua JP, Takano K, Kitamoto K, Kitagaki H, Akao T, Shimoi H.

J Biosci Bioeng. 2007 Sep;104(3):163-70. Erratum in: J Biosci Bioeng. 2007 Oct;104(4):351.

PMID:
17964478
[PubMed - indexed for MEDLINE]
Free Article
7.

Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae.

Ma M, Liu LZ.

BMC Microbiol. 2010 Jun 10;10:169. doi: 10.1186/1471-2180-10-169.

PMID:
20537179
[PubMed - indexed for MEDLINE]
Free PMC Article
8.

Btn2p is involved in ethanol tolerance and biofilm formation in flor yeast.

Espinazo-Romeu M, Cantoral JM, Matallana E, Aranda A.

FEMS Yeast Res. 2008 Nov;8(7):1127-36. doi: 10.1111/j.1567-1364.2008.00397.x. Epub 2008 Jun 12.

PMID:
18554307
[PubMed - indexed for MEDLINE]
9.

Investigating the effectiveness of DNA microarray analysis for identifying the genes involved in l-lactate production by Saccharomyces cerevisiae.

Hirasawa T, Ookubo A, Yoshikawa K, Nagahisa K, Furusawa C, Sawai H, Shimizu H.

Appl Microbiol Biotechnol. 2009 Oct;84(6):1149-59. doi: 10.1007/s00253-009-2209-z.

PMID:
19727705
[PubMed - indexed for MEDLINE]
10.

Saccharomyces cerevisiae and DNA microarray analyses: what did we learn from it for a better understanding and exploitation of yeast biotechnology?

Hirasawa T, Furusawa C, Shimizu H.

Appl Microbiol Biotechnol. 2010 Jun;87(2):391-400. doi: 10.1007/s00253-010-2582-7. Epub 2010 Apr 23. Review.

PMID:
20414652
[PubMed - indexed for MEDLINE]
11.

Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae.

Alexandre H, Ansanay-Galeote V, Dequin S, Blondin B.

FEBS Lett. 2001 Jun 1;498(1):98-103.

PMID:
11389906
[PubMed - indexed for MEDLINE]
Free Article
12.

Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae.

Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD.

Appl Microbiol Biotechnol. 2006 Jul;71(3):339-49. Epub 2005 Oct 13.

PMID:
16222531
[PubMed - indexed for MEDLINE]
13.

Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance.

Yang J, Bae JY, Lee YM, Kwon H, Moon HY, Kang HA, Yee SB, Kim W, Choi W.

Biotechnol Bioeng. 2011 Aug;108(8):1776-87. doi: 10.1002/bit.23141. Epub 2011 Apr 3.

PMID:
21437883
[PubMed - indexed for MEDLINE]
14.

[Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae].

Qu N, He XP, Guo XN, Liu N, Zhang BR.

Wei Sheng Wu Xue Bao. 2006 Feb;46(1):38-42. Chinese.

PMID:
16579462
[PubMed - indexed for MEDLINE]
15.

Disruption of ubiquitin-related genes in laboratory yeast strains enhances ethanol production during sake brewing.

Wu H, Watanabe T, Araki Y, Kitagaki H, Akao T, Takagi H, Shimoi H.

J Biosci Bioeng. 2009 Jun;107(6):636-40. doi: 10.1016/j.jbiosc.2009.01.014.

PMID:
19447341
[PubMed - indexed for MEDLINE]
16.

Rapid strain improvement through optimized evolution in the cytostat.

Gilbert A, Sangurdekar DP, Srienc F.

Biotechnol Bioeng. 2009 Jun 15;103(3):500-12. doi: 10.1002/bit.22272.

PMID:
19241387
[PubMed - indexed for MEDLINE]
17.

Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol.

Teixeira MC, Raposo LR, Mira NP, Lourenço AB, Sá-Correia I.

Appl Environ Microbiol. 2009 Sep;75(18):5761-72. doi: 10.1128/AEM.00845-09. Epub 2009 Jul 24.

PMID:
19633105
[PubMed - indexed for MEDLINE]
Free PMC Article
18.

[Ethanol tolerance in yeast: molecular mechanisms and genetic engineering].

Zhang Q, Zhao X, Jiang R, Li Q, Bai F.

Sheng Wu Gong Cheng Xue Bao. 2009 Apr;25(4):481-7. Review. Chinese.

PMID:
19637619
[PubMed - indexed for MEDLINE]
19.

Identification of gene targets eliciting improved alcohol tolerance in Saccharomyces cerevisiae through inverse metabolic engineering.

Hong ME, Lee KS, Yu BJ, Sung YJ, Park SM, Koo HM, Kweon DH, Park JC, Jin YS.

J Biotechnol. 2010 Aug 20;149(1-2):52-9. doi: 10.1016/j.jbiotec.2010.06.006. Epub 2010 Jun 25.

PMID:
20600383
[PubMed - indexed for MEDLINE]
20.

Identification of genes required for growth under ethanol stress using transposon mutagenesis in Saccharomyces cerevisiae.

Takahashi T, Shimoi H, Ito K.

Mol Genet Genomics. 2001 Aug;265(6):1112-9.

PMID:
11523784
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk