Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 392

Similar articles for PubMed (Select 17340194)

1.

Electric fields around and within single cells during electroporation-a model study.

Mossop BJ, Barr RC, Henshaw JW, Yuan F.

Ann Biomed Eng. 2007 Jul;35(7):1264-75. Epub 2007 Mar 6.

PMID:
17340194
2.

[Analytical model for the transmembrane voltage induced on a permeabilized cell membrane in suspensions exposed to DC pulse fields].

Qin Y, Jiang Y, Lai S.

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2007 Feb;24(1):1-4. Chinese.

PMID:
17333880
3.

Investigating membrane breakdown of neuronal cells exposed to nonuniform electric fields by finite-element modeling and experiments.

Heida T, Wagenaar JB, Rutten WL, Marani E.

IEEE Trans Biomed Eng. 2002 Oct;49(10):1195-203.

PMID:
12374345
4.

Electric fields within cells as a function of membrane resistivity--a model study.

Mossop BJ, Barr RC, Zaharoff DA, Yuan F.

IEEE Trans Nanobioscience. 2004 Sep;3(3):225-31.

PMID:
15473075
5.

DBS-relevant electric fields increase hydraulic conductivity of in vitro endothelial monolayers.

Lopez-Quintero SV, Datta A, Amaya R, Elwassif M, Bikson M, Tarbell JM.

J Neural Eng. 2010 Feb;7(1):16005. doi: 10.1088/1741-2560/7/1/016005. Epub 2010 Jan 14.

PMID:
20075507
6.

Sequential finite element model of tissue electropermeabilization.

Sel D, Cukjati D, Batiuskaite D, Slivnik T, Mir LM, Miklavcic D.

IEEE Trans Biomed Eng. 2005 May;52(5):816-27.

PMID:
15887531
7.
8.

A numerical model of permeabilized skin with local transport regions.

Pavselj N, Miklavcic D.

IEEE Trans Biomed Eng. 2008 Jul;55(7):1927-30. doi: 10.1109/TBME.2008.919730.

PMID:
18595814
9.

Modeling of electric field distribution in tissues during electroporation.

Corovic S, Lackovic I, Sustaric P, Sustar T, Rodic T, Miklavcic D.

Biomed Eng Online. 2013 Feb 21;12:16. doi: 10.1186/1475-925X-12-16.

10.
11.

Interface water dynamics and porating electric fields for phospholipid bilayers.

Ziegler MJ, Vernier PT.

J Phys Chem B. 2008 Oct 30;112(43):13588-96. doi: 10.1021/jp8027726. Epub 2008 Oct 7. Erratum in: J Phys Chem B. 2008 Dec 25;112(51):17003.

PMID:
18837540
12.

Numerical simulation of electroporation in spherical cells.

Ramos A, Suzuki DO, Marques JL.

Artif Organs. 2004 Apr;28(4):357-61.

PMID:
15084196
13.

Modeling electroporation in a single cell.

Krassowska W, Filev PD.

Biophys J. 2007 Jan 15;92(2):404-17. Epub 2006 Oct 20.

14.

An approach to electrical modeling of single and multiple cells.

Gowrishankar TR, Weaver JC.

Proc Natl Acad Sci U S A. 2003 Mar 18;100(6):3203-8. Epub 2003 Mar 7.

15.

Theoretical and experimental analysis of electroporated membrane conductance in cell suspension.

Suzuki DO, Ramos A, Ribeiro MC, Cazarolli LH, Silva FR, Leite LD, Marques JL.

IEEE Trans Biomed Eng. 2011 Dec;58(12):3310-8. doi: 10.1109/TBME.2010.2103074. Epub 2010 Dec 30.

PMID:
21193368
16.

Effect of pore size on the calculated pressure at biological cells pore wall.

El-Hag AH, Zheng Z, Boggs SA, Jayaram SH.

IEEE Trans Nanobioscience. 2006 Sep;5(3):157-63.

PMID:
16999240
17.

Modeling electroporation in a single cell. II. Effects Of ionic concentrations.

DeBruin KA, Krassowska W.

Biophys J. 1999 Sep;77(3):1225-33.

18.

A time-dependent numerical model of transmembrane voltage inducement and electroporation of irregularly shaped cells.

Pucihar G, Miklavcic D, Kotnik T.

IEEE Trans Biomed Eng. 2009 May;56(5):1491-501. doi: 10.1109/TBME.2009.2014244. Epub 2009 Feb 6.

PMID:
19203876
19.

Polarization of a spherical cell in a nonuniform extracellular electric field.

Lee DC, Grill WM.

Ann Biomed Eng. 2005 May;33(5):603-15.

PMID:
15981861
20.

Numerical study of the electrical conductivity and polarization in a suspension of spherical cells.

Ramos A, Suzuki DO, Marques JL.

Bioelectrochemistry. 2006 May;68(2):213-7. Epub 2005 Oct 26.

PMID:
16256446
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk