Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 242

Similar articles for PubMed (Select 17170203)

1.

Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women.

Talanian JL, Galloway SD, Heigenhauser GJ, Bonen A, Spriet LL.

J Appl Physiol (1985). 2007 Apr;102(4):1439-47. Epub 2006 Dec 14.

2.

High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle.

Perry CG, Heigenhauser GJ, Bonen A, Spriet LL.

Appl Physiol Nutr Metab. 2008 Dec;33(6):1112-23. doi: 10.1139/H08-097.

PMID:
19088769
3.

Exercise training increases sarcolemmal and mitochondrial fatty acid transport proteins in human skeletal muscle.

Talanian JL, Holloway GP, Snook LA, Heigenhauser GJ, Bonen A, Spriet LL.

Am J Physiol Endocrinol Metab. 2010 Aug;299(2):E180-8. doi: 10.1152/ajpendo.00073.2010. Epub 2010 May 18.

4.

Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans.

Burgomaster KA, Hughes SC, Heigenhauser GJ, Bradwell SN, Gibala MJ.

J Appl Physiol (1985). 2005 Jun;98(6):1985-90. Epub 2005 Feb 10.

5.

Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance.

Burgomaster KA, Heigenhauser GJ, Gibala MJ.

J Appl Physiol (1985). 2006 Jun;100(6):2041-7. Epub 2006 Feb 9.

6.

Decreased PDH activation and glycogenolysis during exercise following fat adaptation with carbohydrate restoration.

Stellingwerff T, Spriet LL, Watt MJ, Kimber NE, Hargreaves M, Hawley JA, Burke LM.

Am J Physiol Endocrinol Metab. 2006 Feb;290(2):E380-8. Epub 2005 Sep 27.

7.

Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens.

Yeo WK, Paton CD, Garnham AP, Burke LM, Carey AL, Hawley JA.

J Appl Physiol (1985). 2008 Nov;105(5):1462-70. doi: 10.1152/japplphysiol.90882.2008. Epub 2008 Sep 4.

8.

Whole-body fat oxidation determined by graded exercise and indirect calorimetry: a role for muscle oxidative capacity?

Nordby P, Saltin B, Helge JW.

Scand J Med Sci Sports. 2006 Jun;16(3):209-14.

PMID:
16643200
9.

In vivo, fatty acid translocase (CD36) critically regulates skeletal muscle fuel selection, exercise performance, and training-induced adaptation of fatty acid oxidation.

McFarlan JT, Yoshida Y, Jain SS, Han XX, Snook LA, Lally J, Smith BK, Glatz JF, Luiken JJ, Sayer RA, Tupling AR, Chabowski A, Holloway GP, Bonen A.

J Biol Chem. 2012 Jul 6;287(28):23502-16. doi: 10.1074/jbc.M111.315358. Epub 2012 May 14.

10.

Low-volume interval training improves muscle oxidative capacity in sedentary adults.

Hood MS, Little JP, Tarnopolsky MA, Myslik F, Gibala MJ.

Med Sci Sports Exerc. 2011 Oct;43(10):1849-56. doi: 10.1249/MSS.0b013e3182199834.

PMID:
21448086
11.

The effects of training in hyperoxia vs. normoxia on skeletal muscle enzyme activities and exercise performance.

Perry CG, Talanian JL, Heigenhauser GJ, Spriet LL.

J Appl Physiol (1985). 2007 Mar;102(3):1022-7. Epub 2006 Dec 14.

12.

Mitochondrial long chain fatty acid oxidation, fatty acid translocase/CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise.

Holloway GP, Bezaire V, Heigenhauser GJ, Tandon NN, Glatz JF, Luiken JJ, Bonen A, Spriet LL.

J Physiol. 2006 Feb 15;571(Pt 1):201-10. Epub 2005 Dec 15. Erratum in: J Physiol. 2006 Mar 1;571(Pt 2):500.

13.

Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans.

Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald MJ, McGee SL, Gibala MJ.

J Physiol. 2008 Jan 1;586(1):151-60. Epub 2007 Nov 8.

14.

Beneficial metabolic adaptations due to endurance exercise training in the fasted state.

Van Proeyen K, Szlufcik K, Nielens H, Ramaekers M, Hespel P.

J Appl Physiol (1985). 2011 Jan;110(1):236-45. doi: 10.1152/japplphysiol.00907.2010. Epub 2010 Nov 4.

15.

A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms.

Little JP, Safdar A, Wilkin GP, Tarnopolsky MA, Gibala MJ.

J Physiol. 2010 Mar 15;588(Pt 6):1011-22. doi: 10.1113/jphysiol.2009.181743. Epub 2010 Jan 25.

16.

Contributions of working muscle to whole body lipid metabolism are altered by exercise intensity and training.

Friedlander AL, Jacobs KA, Fattor JA, Horning MA, Hagobian TA, Bauer TA, Wolfel EE, Brooks GA.

Am J Physiol Endocrinol Metab. 2007 Jan;292(1):E107-16. Epub 2006 Aug 8.

17.

Effects of dynamic exercise intensity on the activation of hormone-sensitive lipase in human skeletal muscle.

Watt MJ, Heigenhauser GJ, Spriet LL.

J Physiol. 2003 Feb 15;547(Pt 1):301-8. Epub 2002 Dec 20.

18.

Endurance training increases fatty acid turnover, but not fat oxidation, in young men.

Friedlander AL, Casazza GA, Horning MA, Usaj A, Brooks GA.

J Appl Physiol (1985). 1999 Jun;86(6):2097-105.

19.

Exercise training increases branched-chain oxoacid dehydrogenase kinase content in human skeletal muscle.

Howarth KR, Burgomaster KA, Phillips SM, Gibala MJ.

Am J Physiol Regul Integr Comp Physiol. 2007 Sep;293(3):R1335-41. Epub 2007 Jun 20.

20.

Effect of short-term high-intensity interval training vs. continuous training on O2 uptake kinetics, muscle deoxygenation, and exercise performance.

McKay BR, Paterson DH, Kowalchuk JM.

J Appl Physiol (1985). 2009 Jul;107(1):128-38. doi: 10.1152/japplphysiol.90828.2008. Epub 2009 May 14.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk