Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 105

Similar articles for PubMed (Select 16969341)


When transcriptome meets metabolome: fast cellular responses of yeast to sudden relief of glucose limitation.

Kresnowati MT, van Winden WA, Almering MJ, ten Pierick A, Ras C, Knijnenburg TA, Daran-Lapujade P, Pronk JT, Heijnen JJ, Daran JM.

Mol Syst Biol. 2006;2:49. Epub 2006 Sep 12.


Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae.

Li BZ, Yuan YJ.

Appl Microbiol Biotechnol. 2010 May;86(6):1915-24. doi: 10.1007/s00253-010-2518-2. Epub 2010 Mar 23.


Transcriptome analysis of a respiratory Saccharomyces cerevisiae strain suggests the expression of its phenotype is glucose insensitive and predominantly controlled by Hap4, Cat8 and Mig1.

Bonander N, Ferndahl C, Mostad P, Wilks MD, Chang C, Showe L, Gustafsson L, Larsson C, Bill RM.

BMC Genomics. 2008 Jul 31;9:365. doi: 10.1186/1471-2164-9-365.


New insights into the Saccharomyces cerevisiae fermentation switch: dynamic transcriptional response to anaerobicity and glucose-excess.

van den Brink J, Daran-Lapujade P, Pronk JT, de Winde JH.

BMC Genomics. 2008 Feb 27;9:100. doi: 10.1186/1471-2164-9-100.


Rsf1p is required for an efficient metabolic shift from fermentative to glycerol-based respiratory growth in S. cerevisiae.

Roberts GG 3rd, Hudson AP.

Yeast. 2009 Feb;26(2):95-110. doi: 10.1002/yea.1655.


Growth-rate regulated genes have profound impact on interpretation of transcriptome profiling in Saccharomyces cerevisiae.

Regenberg B, Grotkjaer T, Winther O, Fausbøll A, Akesson M, Bro C, Hansen LK, Brunak S, Nielsen J.

Genome Biol. 2006;7(11):R107.


Transcriptome profiling of a Saccharomyces cerevisiae mutant with a constitutively activated Ras/cAMP pathway.

Jones DL, Petty J, Hoyle DC, Hayes A, Ragni E, Popolo L, Oliver SG, Stateva LI.

Physiol Genomics. 2003 Dec 16;16(1):107-18.


Protein kinase A, TOR, and glucose transport control the response to nutrient repletion in Saccharomyces cerevisiae.

Slattery MG, Liko D, Heideman W.

Eukaryot Cell. 2008 Feb;7(2):358-67. Epub 2007 Dec 21.


Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes.

de Groot MJ, Daran-Lapujade P, van Breukelen B, Knijnenburg TA, de Hulster EA, Reinders MJ, Pronk JT, Heck AJ, Slijper M.

Microbiology. 2007 Nov;153(Pt 11):3864-78.


Quantitative transcriptome, proteome, and sulfur metabolite profiling of the Saccharomyces cerevisiae response to arsenite.

Thorsen M, Lagniel G, Kristiansson E, Junot C, Nerman O, Labarre J, Tamás MJ.

Physiol Genomics. 2007 Jun 19;30(1):35-43. Epub 2007 Feb 27.


Stress-dependent coordination of transcriptome and translatome in yeast.

Halbeisen RE, Gerber AP.

PLoS Biol. 2009 May;7(5):e1000105. doi: 10.1371/journal.pbio.1000105. Epub 2009 May 5.


Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development.

Deluc LG, Grimplet J, Wheatley MD, Tillett RL, Quilici DR, Osborne C, Schooley DA, Schlauch KA, Cushman JC, Cramer GR.

BMC Genomics. 2007 Nov 22;8:429.


Strategy of transcription regulation in the budding yeast.

Levy S, Ihmels J, Carmi M, Weinberger A, Friedlander G, Barkai N.

PLoS One. 2007 Feb 28;2(2):e250.


Identification of the copper regulon in Saccharomyces cerevisiae by DNA microarrays.

Gross C, Kelleher M, Iyer VR, Brown PO, Winge DR.

J Biol Chem. 2000 Oct 13;275(41):32310-6.

Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk