Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 643

1.

Diagnosis of breast cancer using diffuse reflectance spectroscopy: Comparison of a Monte Carlo versus partial least squares analysis based feature extraction technique.

Zhu C, Palmer GM, Breslin TM, Harter J, Ramanujam N.

Lasers Surg Med. 2006 Aug;38(7):714-24.

PMID:
16799981
[PubMed - indexed for MEDLINE]
2.

Monte Carlo-based inverse model for calculating tissue optical properties. Part II: Application to breast cancer diagnosis.

Palmer GM, Zhu C, Breslin TM, Xu F, Gilchrist KW, Ramanujam N.

Appl Opt. 2006 Feb 10;45(5):1072-8.

PMID:
16512551
[PubMed - indexed for MEDLINE]
3.

Diagnosis of breast cancer using fluorescence and diffuse reflectance spectroscopy: a Monte-Carlo-model-based approach.

Zhu C, Palmer GM, Breslin TM, Harter J, Ramanujam N.

J Biomed Opt. 2008 May-Jun;13(3):034015. doi: 10.1117/1.2931078.

PMID:
18601560
[PubMed - indexed for MEDLINE]
Free PMC Article
4.

Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer (March 2003).

Palmer GM, Zhu C, Breslin TM, Xu F, Gilchrist KW, Ramanujam N.

IEEE Trans Biomed Eng. 2003 Nov;50(11):1233-42.

PMID:
14619993
[PubMed - indexed for MEDLINE]
5.

Autofluorescence and diffuse reflectance properties of malignant and benign breast tissues.

Breslin TM, Xu F, Palmer GM, Zhu C, Gilchrist KW, Ramanujam N.

Ann Surg Oncol. 2004 Jan;11(1):65-70.

PMID:
14699036
[PubMed - indexed for MEDLINE]
6.

UV reflectance spectroscopy probes DNA and protein changes in human breast tissues.

Yang Y, Celmer EJ, Koutcher JA, Alfano RR.

J Clin Laser Med Surg. 2001 Feb;19(1):35-9.

PMID:
11547817
[PubMed - indexed for MEDLINE]
7.

Comparison of a physical model and principal component analysis for the diagnosis of epithelial neoplasias in vivo using diffuse reflectance spectroscopy.

Skala MC, Palmer GM, Vrotsos KM, Gendron-Fitzpatrick A, Ramanujam N.

Opt Express. 2007 Jun 11;15(12):7863-75.

PMID:
17912337
[PubMed]
Free PMC Article
8.

Monte Carlo simulation of NIR diffuse reflectance in the normal and diseased human breast tissues.

Prince S, Malarvizhi S.

Biofactors. 2007;30(4):255-63.

PMID:
18607075
[PubMed - indexed for MEDLINE]
9.

Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast.

Kennedy S, Geradts J, Bydlon T, Brown JQ, Gallagher J, Junker M, Barry W, Ramanujam N, Wilke L.

Breast Cancer Res. 2010;12(6):R91. doi: 10.1186/bcr2770. Epub 2010 Nov 5.

PMID:
21054873
[PubMed - indexed for MEDLINE]
Free PMC Article
10.

Optical properties of normal and diseased human breast tissues in the visible and near infrared.

Peters VG, Wyman DR, Patterson MS, Frank GL.

Phys Med Biol. 1990 Sep;35(9):1317-34.

PMID:
2236211
[PubMed - indexed for MEDLINE]
11.

DNA and protein changes caused by disease in human breast tissues probed by the Kubelka-Munk spectral functional.

Yang Y, Celmer EJ, Koutcher JA, Alfano RR.

Photochem Photobiol. 2002 Jun;75(6):627-32.

PMID:
12081325
[PubMed - indexed for MEDLINE]
12.

Model based and empirical spectral analysis for the diagnosis of breast cancer.

Zhu C, Breslin TM, Harter J, Ramanujam N.

Opt Express. 2008 Sep 15;16(19):14961-78.

PMID:
18795033
[PubMed - indexed for MEDLINE]
Free PMC Article
13.

Autofluorescence of breast tissues: evaluation of discriminating algorithms for diagnosis of normal, benign, and malignant conditions.

Chowdary MV, Mahato KK, Kumar KK, Mathew S, Rao L, Krishna CM, Kurien J.

Photomed Laser Surg. 2009 Apr;27(2):241-52. doi: 10.1089/pho.2008.2255.

PMID:
19382834
[PubMed - indexed for MEDLINE]
14.

Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods.

Nachabé R, Evers DJ, Hendriks BH, Lucassen GW, van der Voort M, Rutgers EJ, Peeters MJ, Van der Hage JA, Oldenburg HS, Wesseling J, Ruers TJ.

J Biomed Opt. 2011 Aug;16(8):087010. doi: 10.1117/1.3611010.

PMID:
21895337
[PubMed - indexed for MEDLINE]
15.

Multimodality computerized diagnosis of breast lesions using mammography and sonography.

Drukker K, Horsch K, Giger ML.

Acad Radiol. 2005 Aug;12(8):970-9.

PMID:
16087091
[PubMed - indexed for MEDLINE]
16.

Malignant-lesion segmentation using 4D co-occurrence texture analysis applied to dynamic contrast-enhanced magnetic resonance breast image data.

Woods BJ, Clymer BD, Kurc T, Heverhagen JT, Stevens R, Orsdemir A, Bulan O, Knopp MV.

J Magn Reson Imaging. 2007 Mar;25(3):495-501.

PMID:
17279534
[PubMed - indexed for MEDLINE]
17.

In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy.

Cerussi A, Shah N, Hsiang D, Durkin A, Butler J, Tromberg BJ.

J Biomed Opt. 2006 Jul-Aug;11(4):044005.

PMID:
16965162
[PubMed - indexed for MEDLINE]
18.

Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers.

Mavroforakis ME, Georgiou HV, Dimitropoulos N, Cavouras D, Theodoridis S.

Artif Intell Med. 2006 Jun;37(2):145-62. Epub 2006 May 23.

PMID:
16716579
[PubMed - indexed for MEDLINE]
19.

Fluorescence spectroscopy: an adjunct diagnostic tool to image-guided core needle biopsy of the breast.

Zhu C, Burnside ES, Sisney GA, Salkowski LR, Harter JM, Yu B, Ramanujam N.

IEEE Trans Biomed Eng. 2009 Oct;56(10):2518-28. doi: 10.1109/TBME.2009.2015936. Epub 2009 Mar 4.

PMID:
19272976
[PubMed - indexed for MEDLINE]
Free PMC Article
20.

Comparison of autofluorescence, diffuse reflectance, and Raman spectroscopy for breast tissue discrimination.

Majumder SK, Keller MD, Boulos FI, Kelley MC, Mahadevan-Jansen A.

J Biomed Opt. 2008 Sep-Oct;13(5):054009. doi: 10.1117/1.2975962.

PMID:
19021389
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk