Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 116

Similar articles for PubMed (Select 16433409)

1.

Rational design of thermally stable proteins: relevance to bionanotechnology.

Renugopalakrishnan V, Garduño-Juárez R, Narasimhan G, Verma CS, Wei X, Li P.

J Nanosci Nanotechnol. 2005 Nov;5(11):1759-67. Review.

PMID:
16433409
2.

Heat-stable enzymes from extremely thermophilic and hyperthermophilic microorganisms.

Leuschner C, Antranikian G.

World J Microbiol Biotechnol. 1995 Jan;11(1):95-114. doi: 10.1007/BF00339139.

PMID:
24414414
3.

Understanding thermal adaptation of enzymes through the multistate rational design and stability prediction of 100 adenylate kinases.

Howell SC, Inampudi KK, Bean DP, Wilson CJ.

Structure. 2014 Feb 4;22(2):218-29. doi: 10.1016/j.str.2013.10.019. Epub 2013 Dec 19.

4.

Engineering proteins for thermostability through rigidifying flexible sites.

Yu H, Huang H.

Biotechnol Adv. 2014 Mar-Apr;32(2):308-15. doi: 10.1016/j.biotechadv.2013.10.012. Epub 2013 Nov 6. Review.

PMID:
24211474
5.

Directed evolution of bacteriorhodopsin for applications in bioelectronics.

Wagner NL, Greco JA, Ranaghan MJ, Birge RR.

J R Soc Interface. 2013 May 15;10(84):20130197. doi: 10.1098/rsif.2013.0197. Print 2013 Jul 6.

6.

Determination of enzyme thermal parameters for rational enzyme engineering and environmental/evolutionary studies.

Lee CK, Monk CR, Daniel RM.

Methods Mol Biol. 2013;996:219-30. doi: 10.1007/978-1-62703-354-1_13.

PMID:
23504427
7.

Thermophilic proteins: insight and perspective from in silico experiments.

Sterpone F, Melchionna S.

Chem Soc Rev. 2012 Mar 7;41(5):1665-76. doi: 10.1039/c1cs15199a. Epub 2011 Oct 5. Review.

8.

Ionic liquids as advanced lubricant fluids.

Bermúdez MD, Jiménez AE, Sanes J, Carrión FJ.

Molecules. 2009 Aug 4;14(8):2888-908. doi: 10.3390/molecules14082888. Review.

9.

Incorporating receptor flexibility in the molecular design of protein interfaces.

Li L, Liang S, Pilcher MM, Meroueh SO.

Protein Eng Des Sel. 2009 Sep;22(9):575-86. doi: 10.1093/protein/gzp042. Epub 2009 Jul 30.

10.

Structure and dynamics of cold-adapted enzymes as investigated by FT-IR spectroscopy and MD. The case of an esterase from Pseudoalteromonas haloplanktis.

Aurilia V, Rioux-Dubé JF, Marabotti A, Pézolet M, D'Auria S.

J Phys Chem B. 2009 Jun 4;113(22):7753-61. doi: 10.1021/jp901921r.

PMID:
19435327
11.

Subunit interfaces of oligomeric hyperthermophilic enzymes display enhanced compactness.

Baldasseroni F, Pascarella S.

Int J Biol Macromol. 2009 May 1;44(4):353-60. doi: 10.1016/j.ijbiomac.2009.02.002. Epub 2009 Feb 13.

PMID:
19428466
12.

Temperature influence on fluorescence intensity and enzyme activity of the fusion protein of GFP and hyperthermophilic xylanase.

Zhang C, Liu MS, Xing XH.

Appl Microbiol Biotechnol. 2009 Sep;84(3):511-7. doi: 10.1007/s00253-009-2006-8. Epub 2009 Apr 24.

PMID:
19390851
13.

Rational stabilization of enzymes by computational redesign of surface charge-charge interactions.

Gribenko AV, Patel MM, Liu J, McCallum SA, Wang C, Makhatadze GI.

Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2601-6. doi: 10.1073/pnas.0808220106. Epub 2009 Feb 5.

14.

Improving the thermostability and activity of Melanocarpus albomyces cellobiohydrolase Cel7B.

Voutilainen SP, Boer H, Alapuranen M, Jänis J, Vehmaanperä J, Koivula A.

Appl Microbiol Biotechnol. 2009 May;83(2):261-72. doi: 10.1007/s00253-008-1848-9. Epub 2009 Jan 16.

PMID:
19148633
15.

Protein engineering of redox-active enzymes.

Saab-Rincón G, Valderrama B.

Antioxid Redox Signal. 2009 Feb;11(2):167-92. doi: 10.1089/ars.2008.2098. Review.

PMID:
19099403
16.

Key role of proximal water in regulating thermostable proteins.

Sterpone F, Bertonati C, Briganti G, Melchionna S.

J Phys Chem B. 2009 Jan 8;113(1):131-7. doi: 10.1021/jp805199c.

PMID:
19072709
17.

Temperature effects on the nucleation mechanism of protein folding and on the barrierless thermal denaturation of a native protein.

Djikaev YS, Ruckenstein E.

Phys Chem Chem Phys. 2008 Nov 7;10(41):6281-300. doi: 10.1039/b807399f. Epub 2008 Sep 10.

PMID:
18936853
18.

Structural adaptation of the subunit interface of oligomeric thermophilic and hyperthermophilic enzymes.

Maugini E, Tronelli D, Bossa F, Pascarella S.

Comput Biol Chem. 2009 Apr;33(2):137-48. doi: 10.1016/j.compbiolchem.2008.08.003. Epub 2008 Aug 31.

PMID:
18845483
19.

Design of new enzyme stabilizers inspired by glycosides of hyperthermophilic microorganisms.

Faria TQ, Mingote A, Siopa F, Ventura R, Maycock C, Santos H.

Carbohydr Res. 2008 Dec 8;343(18):3025-33. doi: 10.1016/j.carres.2008.08.030. Epub 2008 Sep 9.

PMID:
18822412
20.

A stabilizing alpha/beta-hydrophobic core greatly contributes to hyperthermostability of archaeal [P62A]Ssh10b.

Fang X, Cui Q, Tong Y, Feng Y, Shan L, Huang L, Wang J.

Biochemistry. 2008 Oct 28;47(43):11212-21. doi: 10.1021/bi8007593. Epub 2008 Sep 27.

PMID:
18821773
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk