Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 387

1.

P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation.

Yamada T, Yamaguchi Y, Inukai N, Okamoto S, Mura T, Handa H.

Mol Cell. 2006 Jan 20;21(2):227-37.

2.

Structure-function analysis of human Spt4: evidence that hSpt4 and hSpt5 exert their roles in transcriptional elongation as parts of the DSIF complex.

Kim DK, Inukai N, Yamada T, Furuya A, Sato H, Yamaguchi Y, Wada T, Handa H.

Genes Cells. 2003 Apr;8(4):371-8.

5.

The transcription elongation factors NELF, DSIF and P-TEFb control constitutive transcription in a gene-specific manner.

Fujita T, Piuz I, Schlegel W.

FEBS Lett. 2009 Sep 3;583(17):2893-8. doi: 10.1016/j.febslet.2009.07.050. Epub 2009 Aug 3.

6.

Coordination of transcription factor phosphorylation and histone methylation by the P-TEFb kinase during human immunodeficiency virus type 1 transcription.

Zhou M, Deng L, Lacoste V, Park HU, Pumfery A, Kashanchi F, Brady JN, Kumar A.

J Virol. 2004 Dec;78(24):13522-33.

7.

Gene-specific recruitment of positive and negative elongation factors during stimulated transcription of the MKP-1 gene in neuroendocrine cells.

Fujita T, Ryser S, Tortola S, Piuz I, Schlegel W.

Nucleic Acids Res. 2007;35(3):1007-17. Epub 2007 Jan 26.

8.

Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro.

Wada T, Takagi T, Yamaguchi Y, Watanabe D, Handa H.

EMBO J. 1998 Dec 15;17(24):7395-403.

9.

FACT relieves DSIF/NELF-mediated inhibition of transcriptional elongation and reveals functional differences between P-TEFb and TFIIH.

Wada T, Orphanides G, Hasegawa J, Kim DK, Shima D, Yamaguchi Y, Fukuda A, Hisatake K, Oh S, Reinberg D, Handa H.

Mol Cell. 2000 Jun;5(6):1067-72.

10.

Crystal structure of the human transcription elongation factor DSIF hSpt4 subunit in complex with the hSpt5 dimerization interface.

Wenzel S, Martins BM, Rösch P, Wöhrl BM.

Biochem J. 2009 Dec 23;425(2):373-80. doi: 10.1042/BJ20091422.

PMID:
19860741
11.

Studies of nematode TFIIE function reveal a link between Ser-5 phosphorylation of RNA polymerase II and the transition from transcription initiation to elongation.

Yamamoto S, Watanabe Y, van der Spek PJ, Watanabe T, Fujimoto H, Hanaoka F, Ohkuma Y.

Mol Cell Biol. 2001 Jan;21(1):1-15.

12.

Regulation of P-TEFb elongation complex activity by CDK9 acetylation.

Fu J, Yoon HG, Qin J, Wong J.

Mol Cell Biol. 2007 Jul;27(13):4641-51. Epub 2007 Apr 23.

14.

Chromatin structure is implicated in "late" elongation checkpoints on the U2 snRNA and beta-actin genes.

Egloff S, Al-Rawaf H, O'Reilly D, Murphy S.

Mol Cell Biol. 2009 Jul;29(14):4002-13. doi: 10.1128/MCB.00189-09. Epub 2009 May 18.

15.
16.

Splicing and transcription-associated proteins PSF and p54nrb/nonO bind to the RNA polymerase II CTD.

Emili A, Shales M, McCracken S, Xie W, Tucker PW, Kobayashi R, Blencowe BJ, Ingles CJ.

RNA. 2002 Sep;8(9):1102-11.

18.

Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program.

Gomes NP, Bjerke G, Llorente B, Szostek SA, Emerson BM, Espinosa JM.

Genes Dev. 2006 Mar 1;20(5):601-12.

19.

BRCA1 cooperates with NUFIP and P-TEFb to activate transcription by RNA polymerase II.

Cabart P, Chew HK, Murphy S.

Oncogene. 2004 Jul 8;23(31):5316-29.

PMID:
15107825
20.
Items per page

Supplemental Content

Write to the Help Desk