Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 226

Similar articles for PubMed (Select 16174776)

1.

Transport activity of MCT1 expressed in Xenopus oocytes is increased by interaction with carbonic anhydrase.

Becker HM, Hirnet D, Fecher-Trost C, Sültemeyer D, Deitmer JW.

J Biol Chem. 2005 Dec 2;280(48):39882-9. Epub 2005 Sep 20.

2.

Nonenzymatic proton handling by carbonic anhydrase II during H+-lactate cotransport via monocarboxylate transporter 1.

Becker HM, Deitmer JW.

J Biol Chem. 2008 Aug 1;283(31):21655-67. doi: 10.1074/jbc.M802134200. Epub 2008 Jun 6.

3.

Nonenzymatic augmentation of lactate transport via monocarboxylate transporter isoform 4 by carbonic anhydrase II.

Becker HM, Klier M, Deitmer JW.

J Membr Biol. 2010 Apr;234(2):125-35. doi: 10.1007/s00232-010-9240-y. Epub 2010 Mar 19.

PMID:
20300744
4.

Intracellular and extracellular carbonic anhydrases cooperate non-enzymatically to enhance activity of monocarboxylate transporters.

Klier M, Andes FT, Deitmer JW, Becker HM.

J Biol Chem. 2014 Jan 31;289(5):2765-75. doi: 10.1074/jbc.M113.537043. Epub 2013 Dec 12.

5.
6.

Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH.

Bröer S, Schneider HP, Bröer A, Rahman B, Hamprecht B, Deitmer JW.

Biochem J. 1998 Jul 1;333 ( Pt 1):167-74.

7.

Measuring ion transport activities in Xenopus oocytes using the ion-trap technique.

Blanchard MG, Longpré JP, Wallendorff B, Lapointe JY.

Am J Physiol Cell Physiol. 2008 Nov;295(5):C1464-72. doi: 10.1152/ajpcell.00560.2007. Epub 2008 Oct 1.

9.

Intramolecular proton shuttle supports not only catalytic but also noncatalytic function of carbonic anhydrase II.

Becker HM, Klier M, Schüler C, McKenna R, Deitmer JW.

Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):3071-6. doi: 10.1073/pnas.1014293108. Epub 2011 Jan 31.

10.

Analysis of the binding moiety mediating the interaction between monocarboxylate transporters and carbonic anhydrase II.

Noor SI, Dietz S, Heidtmann H, Boone CD, McKenna R, Deitmer JW, Becker HM.

J Biol Chem. 2015 Feb 13;290(7):4476-86. doi: 10.1074/jbc.M114.624577. Epub 2015 Jan 5.

PMID:
25561737
11.
12.

Extracellular carbonic anhydrase activity facilitates lactic acid transport in rat skeletal muscle fibres.

Wetzel P, Hasse A, Papadopoulos S, Voipio J, Kaila K, Gros G.

J Physiol. 2001 Mar 15;531(Pt 3):743-56.

13.

Bicarbonate, NBCe1, NHE, and carbonic anhydrase activity enhance lactate-H+ transport in bovine corneal endothelium.

Nguyen TT, Bonanno JA.

Invest Ophthalmol Vis Sci. 2011 Oct 17;52(11):8086-93. doi: 10.1167/iovs.11-8086.

14.
15.

Transport activity of the high-affinity monocarboxylate transporter MCT2 is enhanced by extracellular carbonic anhydrase IV but not by intracellular carbonic anhydrase II.

Klier M, Schüler C, Halestrap AP, Sly WS, Deitmer JW, Becker HM.

J Biol Chem. 2011 Aug 5;286(31):27781-91. doi: 10.1074/jbc.M111.255331. Epub 2011 Jun 16.

16.

Effect of expressing the water channel aquaporin-1 on the CO2 permeability of Xenopus oocytes.

Nakhoul NL, Davis BA, Romero MF, Boron WF.

Am J Physiol. 1998 Feb;274(2 Pt 1):C543-8.

17.
18.

Transport and uptake of nateglinide in Caco-2 cells and its inhibitory effect on human monocarboxylate transporter MCT1.

Okamura A, Emoto A, Koyabu N, Ohtani H, Sawada Y.

Br J Pharmacol. 2002 Oct;137(3):391-9.

19.

MCT1-mediated transport of L-lactic acid at the inner blood-retinal barrier: a possible route for delivery of monocarboxylic acid drugs to the retina.

Hosoya K, Kondo T, Tomi M, Takanaga H, Ohtsuki S, Terasaki T.

Pharm Res. 2001 Dec;18(12):1669-76.

PMID:
11785685
20.

Carbonic anhydrase II increases the activity of the human electrogenic Na+/HCO3- cotransporter.

Becker HM, Deitmer JW.

J Biol Chem. 2007 May 4;282(18):13508-21. Epub 2007 Mar 12.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk