Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 193

Similar articles for PubMed (Select 15998776)

1.

Severe congenital hyperinsulinism caused by a mutation in the Kir6.2 subunit of the adenosine triphosphate-sensitive potassium channel impairing trafficking and function.

Marthinet E, Bloc A, Oka Y, Tanizawa Y, Wehrle-Haller B, Bancila V, Dubuis JM, Philippe J, Schwitzgebel VM.

J Clin Endocrinol Metab. 2005 Sep;90(9):5401-6. Epub 2005 Jul 5.

PMID:
15998776
2.

Molecular Mechanisms of Congenital Hyperinsulinism due to Autosomal Dominant Mutations in ABCC8.

Nessa A, Aziz QH, Thomas AM, Harmer SC, Tinker A, Hussain K.

Hum Mol Genet. 2015 Jun 19. pii: ddv233. [Epub ahead of print]

PMID:
26092864
3.

Surgical management of congenital hyperinsulinism in a resource-limited setting.

B Kurbet S, Parameshwar Prashanth G, C Pujar V, R Bhandankar M, M Dhaded S, V Patil M.

J Neonatal Surg. 2013 Apr 1;2(2):26. eCollection 2013 Apr-Jun. No abstract available.

4.

Altered phenotype of β-cells and other pancreatic cell lineages in patients with diffuse Congenital Hyperinsulinism in Infancy due to mutations in the ATP-sensitive K-channel.

Salisbury RJ, Han B, Jennings RE, Berry AA, Stevens A, Mohamed Z, Sugden SA, De Krijger R, Cross SE, Johnson PP, Newbould M, Cosgrove KE, Hanley KP, Banerjee I, Dunne MJ, Hanley NA.

Diabetes. 2015 Apr 30. pii: db141202. [Epub ahead of print]

PMID:
25931474
5.

Alternating hypoglycemia and hyperglycemia in a toddler with a homozygous p.R1419H ABCC8 mutation: an unusual clinical picture.

Harel S, Cohen AS, Hussain K, Flanagan SE, Schlade-Bartusiak K, Patel M, Courtade J, Li JB, Van Karnebeek C, Kurata H, Ellard S, Chanoine JP, Gibson WT.

J Pediatr Endocrinol Metab. 2015 Mar;28(3-4):345-51. doi: 10.1515/jpem-2014-0265.

PMID:
25720052
6.

Elucidation of the Inhibitory Effect of Phytochemicals with Kir6.2 Wild-Type and Mutant Models Associated in Type-1 Diabetes through Molecular Docking Approach.

Jagadeb M, Konkimalla VB, Rath SN, Das RP.

Genomics Inform. 2014 Dec;12(4):283-8. doi: 10.5808/GI.2014.12.4.283. Epub 2014 Dec 31.

7.

Physiological techniques in the study of rapid aldosterone effects.

Yusef YR, Thomas W, Harvey BJ.

Methods Mol Biol. 2014;1204:219-31. doi: 10.1007/978-1-4939-1346-6_19.

PMID:
25182774
8.

Effects of simvastatin on glucose metabolism in mouse MIN6 cells.

Zhou J, Li W, Xie Q, Hou Y, Zhan S, Yang X, Xu X, Cai J, Huang Z.

J Diabetes Res. 2014;2014:376570. doi: 10.1155/2014/376570. Epub 2014 Jun 4.

9.

Congenital hyperinsulinism in a newborn with a novel homozygous mutation (p.Q392H) in the ABCC8 gene.

Ince DA, Sahin NM, Ecevit A, Kurt A, Kinik ST, Flanagan SE, Hussain K, Tarcan A.

J Pediatr Endocrinol Metab. 2014 Nov;27(11-12):1253-5. doi: 10.1515/jpem-2014-0072.

PMID:
24945427
10.

Novel mutation c.597_598dup in exon 5 of ABCC8 gene causing congenital hyperinsulinism.

Jindal R, Ahmad A, Siddiqui MA, Kochar IS, Wangnoo SK.

Diabetes Metab Syndr. 2014 Jan-Mar;8(1):45-7. doi: 10.1016/j.dsx.2013.02.018. Epub 2013 Mar 26.

PMID:
24661758
11.

Congenital hyperinsulinism presenting with different clinical, biochemical and molecular genetic spectra.

Şimşek E, Binay Ç, Flanagan SE, Ellard S, Hussain K, Kabukçuoğlu S.

Turk J Pediatr. 2013 Nov-Dec;55(6):584-90.

12.

Rebuilding a macromolecular membrane complex at the atomic scale: case of the Kir6.2 potassium channel coupled to the muscarinic acetylcholine receptor M2.

Sapay N, Estrada-Mondragon A, Moreau C, Vivaudou M, Crouzy S.

Proteins. 2014 Sep;82(9):1694-707. doi: 10.1002/prot.24521. Epub 2014 Feb 18.

PMID:
24464835
13.

Long-term follow-up and mutation analysis of 27 chinese cases of congenital hyperinsulinism.

Su C, Gong C, Sanger P, Li W, Wu D, Gu Y, Cao B.

Horm Res Paediatr. 2014;81(3):169-76. doi: 10.1159/000356911. Epub 2014 Jan 9.

PMID:
24434300
14.

A syndrome of congenital hyperinsulinism and rhabdomyolysis is caused by KCNJ11 mutation.

Albaqumi M, Alhabib FA, Shamseldin HE, Mohammed F, Alkuraya FS.

J Med Genet. 2014 Apr;51(4):271-4. doi: 10.1136/jmedgenet-2013-102085. Epub 2014 Jan 13.

PMID:
24421282
15.

Clinical and genetic evaluation of patients with KATP channel mutations from the German registry for congenital hyperinsulinism.

Mohnike K, Wieland I, Barthlen W, Vogelgesang S, Empting S, Mohnike W, Meissner T, Zenker M.

Horm Res Paediatr. 2014;81(3):156-68. doi: 10.1159/000356905. Epub 2014 Jan 7.

PMID:
24401662
16.

Pharmacological rescue of trafficking-impaired ATP-sensitive potassium channels.

Martin GM, Chen PC, Devaraneni P, Shyng SL.

Front Physiol. 2013 Dec 24;4:386. doi: 10.3389/fphys.2013.00386. Review.

17.
18.

βIV-Spectrin and CaMKII facilitate Kir6.2 regulation in pancreatic beta cells.

Kline CF, Wright PJ, Koval OM, Zmuda EJ, Johnson BL, Anderson ME, Hai T, Hund TJ, Mohler PJ.

Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):17576-81. doi: 10.1073/pnas.1314195110. Epub 2013 Oct 7.

19.

Octreotide-induced long QT syndrome in a child with congenital hyperinsulinemia and a novel missense mutation (p.Met115Val) in the ABCC8 gene.

Celik N, Cinaz P, Emeksiz HC, Hussain K, Çamurdan O, Bideci A, Döğer E, Yüce Ö, Türkyılmaz Z, Oğuz AD.

Horm Res Paediatr. 2013;80(4):299-303. doi: 10.1159/000354666. Epub 2013 Sep 27.

PMID:
24080777
20.

Decomposition of slide helix contributions to ATP-dependent inhibition of Kir6.2 channels.

Li JB, Huang X, Zhang RS, Kim RY, Yang R, Kurata HT.

J Biol Chem. 2013 Aug 9;288(32):23038-49. doi: 10.1074/jbc.M113.485789. Epub 2013 Jun 24.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk