Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 247

Related Citations for PubMed (Select 15989956)

1.

ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor.

Chen D, Kon N, Li M, Zhang W, Qin J, Gu W.

Cell. 2005 Jul 1;121(7):1071-83.

2.

p53- and Mdm2-independent repression of NF-kappa B transactivation by the ARF tumor suppressor.

Rocha S, Campbell KJ, Perkins ND.

Mol Cell. 2003 Jul;12(1):15-25.

PMID:
12887889
3.

A novel ARF-binding protein (LZAP) alters ARF regulation of HDM2.

Wang J, He X, Luo Y, Yarbrough WG.

Biochem J. 2006 Jan 15;393(Pt 2):489-501.

4.

ARF function does not require p53 stabilization or Mdm2 relocalization.

Korgaonkar C, Zhao L, Modestou M, Quelle DE.

Mol Cell Biol. 2002 Jan;22(1):196-206.

5.

An N-terminal p14ARF peptide blocks Mdm2-dependent ubiquitination in vitro and can activate p53 in vivo.

Midgley CA, Desterro JM, Saville MK, Howard S, Sparks A, Hay RT, Lane DP.

Oncogene. 2000 May 4;19(19):2312-23.

6.

Growth suppression by a p14(ARF) exon 1beta adenovirus in human tumor cell lines of varying p53 and Rb status.

Saadatmandi N, Tyler T, Huang Y, Haghighi A, Frost G, Borgstrom P, Gjerset RA.

Cancer Gene Ther. 2002 Oct;9(10):830-9.

7.

The ARF tumour suppressor.

Gallagher SJ, Kefford RF, Rizos H.

Int J Biochem Cell Biol. 2006;38(10):1637-41. Epub 2006 Feb 28. Review.

PMID:
16600663
9.

The early growth response gene EGR-1 behaves as a suppressor gene that is down-regulated independent of ARF/Mdm2 but not p53 alterations in fresh human gliomas.

Calogero A, Arcella A, De Gregorio G, Porcellini A, Mercola D, Liu C, Lombari V, Zani M, Giannini G, Gagliardi FM, Caruso R, Gulino A, Frati L, Ragona G.

Clin Cancer Res. 2001 Sep;7(9):2788-96. Erratum in: Clin Cancer Res 2002 Jan;8(1):299.

10.

p19(ARF) is dispensable for oncogenic stress-induced p53-mediated apoptosis and tumor suppression in vivo.

Tolbert D, Lu X, Yin C, Tantama M, Van Dyke T.

Mol Cell Biol. 2002 Jan;22(1):370-7.

11.

Oncomir miR-125b suppresses p14(ARF) to modulate p53-dependent and p53-independent apoptosis in prostate cancer.

Amir S, Ma AH, Shi XB, Xue L, Kung HJ, Devere White RW.

PLoS One. 2013 Apr 9;8(4):e61064. doi: 10.1371/journal.pone.0061064. Print 2013.

12.

The ubiquitin ligase COP1 is a critical negative regulator of p53.

Dornan D, Wertz I, Shimizu H, Arnott D, Frantz GD, Dowd P, O'Rourke K, Koeppen H, Dixit VM.

Nature. 2004 May 6;429(6987):86-92. Epub 2004 Apr 21.

PMID:
15103385
13.

Life, death, and ubiquitin: taming the mule.

Shmueli A, Oren M.

Cell. 2005 Jul 1;121(7):963-5. Review.

14.

Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation.

Itahana K, Bhat KP, Jin A, Itahana Y, Hawke D, Kobayashi R, Zhang Y.

Mol Cell. 2003 Nov;12(5):1151-64.

PMID:
14636574
15.

Mdm-2 and ubiquitin-independent p53 proteasomal degradation regulated by NQO1.

Asher G, Lotem J, Sachs L, Kahana C, Shaul Y.

Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):13125-30. Epub 2002 Sep 13.

16.

Dynamics in the p53-Mdm2 ubiquitination pathway.

Brooks CL, Gu W.

Cell Cycle. 2004 Jul;3(7):895-9. Epub 2004 Jul 2. Review.

17.

Adenoviral E1A targets Mdm4 to stabilize tumor suppressor p53.

Li Z, Day CP, Yang JY, Tsai WB, Lozano G, Shih HM, Hung MC.

Cancer Res. 2004 Dec 15;64(24):9080-5.

18.
19.

Sumoylation induced by the Arf tumor suppressor: a p53-independent function.

Tago K, Chiocca S, Sherr CJ.

Proc Natl Acad Sci U S A. 2005 May 24;102(21):7689-94. Epub 2005 May 16.

20.
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk