Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 733

1.

A novel approach for clustering proteomics data using Bayesian fast Fourier transform.

Bensmail H, Golek J, Moody MM, Semmes JO, Haoudi A.

Bioinformatics. 2005 May 15;21(10):2210-24. Epub 2005 Mar 15.

2.
3.

Clustering of change patterns using Fourier coefficients.

Kim J, Kim H.

Bioinformatics. 2008 Jan 15;24(2):184-91. Epub 2007 Nov 19.

4.
5.

Guilt-by-association feature selection: identifying biomarkers from proteomic profiles.

Shin H, Sheu B, Joseph M, Markey MK.

J Biomed Inform. 2008 Feb;41(1):124-36. Epub 2007 Apr 14.

6.

A database application for pre-processing, storage and comparison of mass spectra derived from patients and controls.

Titulaer MK, Siccama I, Dekker LJ, van Rijswijk AL, Heeren RM, Sillevis Smitt PA, Luider TM.

BMC Bioinformatics. 2006 Sep 5;7:403.

7.

A variational Bayesian mixture modelling framework for cluster analysis of gene-expression data.

Teschendorff AE, Wang Y, Barbosa-Morais NL, Brenton JD, Caldas C.

Bioinformatics. 2005 Jul 1;21(13):3025-33. Epub 2005 Apr 28.

8.

Discrete serum protein signatures discriminate between human retrovirus-associated hematologic and neurologic disease.

Semmes OJ, Cazares LH, Ward MD, Qi L, Moody M, Maloney E, Morris J, Trosset MW, Hisada M, Gygi S, Jacobson S.

Leukemia. 2005 Jul;19(7):1229-38.

PMID:
15889159
9.

Bayesian mixture model based clustering of replicated microarray data.

Medvedovic M, Yeung KY, Bumgarner RE.

Bioinformatics. 2004 May 22;20(8):1222-32. Epub 2004 Feb 10.

10.

Attribute clustering for grouping, selection, and classification of gene expression data.

Au WH, Chan KC, Wong AK, Wang Y.

IEEE/ACM Trans Comput Biol Bioinform. 2005 Apr-Jun;2(2):83-101. Erratum in: IEEE/ACM Trans Comput Biol Bioinform. 2007 Jan-Mar;4(1):157.

PMID:
17044174
11.

Clustering of gene expression data: performance and similarity analysis.

Yin L, Huang CH, Ni J.

BMC Bioinformatics. 2006 Dec 12;7 Suppl 4:S19.

12.

A practical comparison of two K-Means clustering algorithms.

Wilkin GA, Huang X.

BMC Bioinformatics. 2008 May 28;9 Suppl 6:S19. doi: 10.1186/1471-2105-9-S6-S19.

13.

A Bayesian approach to joint feature selection and classifier design.

Krishnapuram B, Hartemink AJ, Carin L, Figueiredo MA.

IEEE Trans Pattern Anal Mach Intell. 2004 Sep;26(9):1105-11.

PMID:
15742887
14.

Poisson-based self-organizing feature maps and hierarchical clustering for serial analysis of gene expression data.

Wang H, Zheng H, Azuaje F.

IEEE/ACM Trans Comput Biol Bioinform. 2007 Apr-Jun;4(2):163-75.

PMID:
17473311
15.

Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching.

Du P, Kibbe WA, Lin SM.

Bioinformatics. 2006 Sep 1;22(17):2059-65. Epub 2006 Jul 4.

16.

Proteomic biomarker identification for diagnosis of early relapse in ovarian cancer.

Oh JH, Nandi A, Gurnani P, Knowles L, Schorge J, Rosenblatt KP, Gao JX.

J Bioinform Comput Biol. 2006 Dec;4(6):1159-79.

PMID:
17245808
17.

Clustering gene expression data using a diffraction-inspired framework.

Dinger SC, Van Wyk MA, Carmona S, Rubin DM.

Biomed Eng Online. 2012 Nov 19;11:85. doi: 10.1186/1475-925X-11-85.

18.

Bagging linear sparse Bayesian learning models for variable selection in cancer diagnosis.

Lu C, Devos A, Suykens JA, ArĂºs C, Van Huffel S.

IEEE Trans Inf Technol Biomed. 2007 May;11(3):338-47.

PMID:
17521084
19.

Measuring similarities between gene expression profiles through new data transformations.

Kim K, Zhang S, Jiang K, Cai L, Lee IB, Feldman LJ, Huang H.

BMC Bioinformatics. 2007 Jan 27;8:29.

20.

An introspective comparison of random forest-based classifiers for the analysis of cluster-correlated data by way of RF++.

Karpievitch YV, Hill EG, Leclerc AP, Dabney AR, Almeida JS.

PLoS One. 2009 Sep 18;4(9):e7087. doi: 10.1371/journal.pone.0007087.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk