Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 137

1.
2.
3.

Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.

Almeida JR, Bertilsson M, Hahn-Hägerdal B, Lidén G, Gorwa-Grauslund MF.

Appl Microbiol Biotechnol. 2009 Sep;84(4):751-61. doi: 10.1007/s00253-009-2053-1. Epub 2009 Jun 9.

PMID:
19506862
4.

Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae.

Hou J, Vemuri GN, Bao X, Olsson L.

Appl Microbiol Biotechnol. 2009 Apr;82(5):909-19. doi: 10.1007/s00253-009-1900-4. Epub 2009 Feb 17.

PMID:
19221731
5.

Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain.

Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT.

FEMS Yeast Res. 2005 Jul;5(10):925-34.

6.

Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae.

Verho R, Londesborough J, Penttilä M, Richard P.

Appl Environ Microbiol. 2003 Oct;69(10):5892-7.

7.
8.
9.

Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures.

Eliasson A, Christensson C, Wahlbom CF, Hahn-Hägerdal B.

Appl Environ Microbiol. 2000 Aug;66(8):3381-6.

10.

Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113-1A.

Jouhten P, Rintala E, Huuskonen A, Tamminen A, Toivari M, Wiebe M, Ruohonen L, Penttilä M, Maaheimo H.

BMC Syst Biol. 2008 Jul 9;2:60. doi: 10.1186/1752-0509-2-60.

11.
12.

Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae.

Roca C, Haack MB, Olsson L.

Appl Microbiol Biotechnol. 2004 Feb;63(5):578-83. Epub 2003 Aug 19.

PMID:
12925863
13.

Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture.

Pitkänen JP, Aristidou A, Salusjärvi L, Ruohonen L, Penttilä M.

Metab Eng. 2003 Jan;5(1):16-31.

PMID:
12749841
14.

A heterologous reductase affects the redox balance of recombinant Saccharomyces cerevisiae.

Meinander N, Zacchi G, Hahn-Hägerdal B.

Microbiology. 1996 Jan;142 ( Pt 1):165-72.

PMID:
8581161
15.
16.

Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation.

Kuyper M, Hartog MM, Toirkens MJ, Almering MJ, Winkler AA, van Dijken JP, Pronk JT.

FEMS Yeast Res. 2005 Feb;5(4-5):399-409.

17.

Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation.

Hector RE, Mertens JA, Bowman MJ, Nichols NN, Cotta MA, Hughes SR.

Yeast. 2011 Sep;28(9):645-60. doi: 10.1002/yea.1893. Epub 2011 Aug 1.

PMID:
21809385
18.

Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.

Nissen TL, Hamann CW, Kielland-Brandt MC, Nielsen J, Villadsen J.

Yeast. 2000 Mar 30;16(5):463-74.

PMID:
10705374
19.

Metabolic analysis of the synthesis of high levels of intracellular human SOD in Saccharomyces cerevisiae rhSOD 2060 411 SGA122.

Gonzalez R, Andrews BA, Molitor J, Asenjo JA.

Biotechnol Bioeng. 2003 Apr 20;82(2):152-69.

PMID:
12584757
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk