Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 122

1.

Functional optical coherence tomography for detecting neural activity through scattering changes.

Lazebnik M, Marks DL, Potgieter K, Gillette R, Boppart SA.

Opt Lett. 2003 Jul 15;28(14):1218-20.

PMID:
12885026
2.

Detecting intrinsic scattering changes correlated to neuron action potentials using optical coherence imaging.

Graf BW, Ralston TS, Ko HJ, Boppart SA.

Opt Express. 2009 Aug 3;17(16):13447-57.

3.

Hundreds of neurons in the Aplysia abdominal ganglion are active during the gill-withdrawal reflex.

Zecević D, Wu JY, Cohen LB, London JA, Höpp HP, Falk CX.

J Neurosci. 1989 Oct;9(10):3681-9.

4.

Precision of measurement of tissue optical properties with optical coherence tomography.

Kholodnykh AI, Petrova IY, Larin KV, Motamedi M, Esenaliev RO.

Appl Opt. 2003 Jun 1;42(16):3027-37.

PMID:
12790454
5.

Rapid optical coherence tomography and recording functional scattering changes from activated frog retina.

Yao XC, Yamauchi A, Perry B, George JS.

Appl Opt. 2005 Apr 10;44(11):2019-23.

PMID:
15835350
6.
7.

Optical-fiber-based Mueller optical coherence tomography.

Jiao S, Yu W, Stoica G, Wang LV.

Opt Lett. 2003 Jul 15;28(14):1206-8.

PMID:
12885022
8.

Optical monitoring of activity of many neurons in invertebrate ganglia during behaviors.

Wu JY, London JA, Zecevic D, Höpp HP, Cohen LB, Xiao C.

Experientia. 1988 May 15;44(5):369-76. Review.

PMID:
3286282
9.

Simulation of polarization-sensitive optical coherence tomography images by a Monte Carlo method.

Meglinski I, Kirillin M, Kuzmin V, Myllylä R.

Opt Lett. 2008 Jul 15;33(14):1581-3.

PMID:
18628804
10.

Dispersion in a grating-based optical delay line for optical coherence tomography.

Niblack WK, Schenk JO, Liu B, Brezinski ME.

Appl Opt. 2003 Jul 1;42(19):4115-8.

PMID:
12868854
11.
12.

Extraction of optical scattering parameters and attenuation compensation in optical coherence tomography images of multilayered tissue structures.

Thrane L, Frosz MH, Jørgensen TM, Tycho A, Yura HT, Andersen PE.

Opt Lett. 2004 Jul 15;29(14):1641-3.

PMID:
15309845
13.

Using the light scattering component of optical intrinsic signals to visualize in vivo functional structures of neural tissues.

Rajagopalan UM, Tsunoda K, Tanifuji M.

Methods Mol Biol. 2009;489:111-32. doi: 10.1007/978-1-59745-543-5_6.

PMID:
18839090
14.

Optical coherence tomography of cavernous nerves: a step toward real-time intraoperative imaging during nerve-sparing radical prostatectomy.

Rais-Bahrami S, Levinson AW, Fried NM, Lagoda GA, Hristov A, Chuang Y, Burnett AL, Su LM.

Urology. 2008 Jul;72(1):198-204. doi: 10.1016/j.urology.2007.11.084. Epub 2008 Feb 20.

PMID:
18280549
15.

Imaging the cavernous nerves in the rat prostate using optical coherence tomography.

Fried NM, Rais-Bahrami S, Lagoda GA, Chuang Y, Burnett AL, Su LM.

Lasers Surg Med. 2007 Jan;39(1):36-41.

PMID:
17163481
16.
17.
18.

Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle.

Thrane L, Yura HT, Andersen PE.

J Opt Soc Am A Opt Image Sci Vis. 2000 Mar;17(3):484-90.

PMID:
10708029
19.

Optical coherence tomography phase measurement of transient changes in squid giant axons during activity.

Akkin T, Landowne D, Sivaprakasam A.

J Membr Biol. 2009 Sep;231(1):35-46. doi: 10.1007/s00232-009-9202-4. Epub 2009 Oct 6.

PMID:
19806385
20.
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk