Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 136

Similar articles for PubMed (Select 12062417)

1.

Aerobic and anaerobic NAD+ metabolism in Saccharomyces cerevisiae.

Panozzo C, Nawara M, Suski C, Kucharczyka R, Skoneczny M, Bécam AM, Rytka J, Herbert CJ.

FEBS Lett. 2002 Apr 24;517(1-3):97-102.

2.

Why do some yeast species require niacin for growth? Different modes of NAD synthesis.

Li YF, Bao WG.

FEMS Yeast Res. 2007 Aug;7(5):657-64. Epub 2007 Apr 10.

3.

The yeast gene YJR025c encodes a 3-hydroxyanthranilic acid dioxygenase and is involved in nicotinic acid biosynthesis.

Kucharczyk R, Zagulski M, Rytka J, Herbert CJ.

FEBS Lett. 1998 Mar 13;424(3):127-30.

4.

Comprehensive X-ray structural studies of the quinolinate phosphoribosyl transferase (BNA6) from Saccharomyces cerevisiae.

di Luccio E, Wilson DK.

Biochemistry. 2008 Apr 1;47(13):4039-50. doi: 10.1021/bi7020475. Epub 2008 Mar 6.

PMID:
18321072
5.

Metabolism of tryptophan to niacin in Saccharomyces uvarum.

Shin M, Sano K, Umezawa C.

J Nutr Sci Vitaminol (Tokyo). 1991 Jun;37(3):269-83.

PMID:
1919812
6.

Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae.

Björkqvist S, Ansell R, Adler L, Lidén G.

Appl Environ Microbiol. 1997 Jan;63(1):128-32.

8.

Secretion of quinolinic acid, an intermediate in the kynurenine pathway, for utilization in NAD+ biosynthesis in the yeast Saccharomyces cerevisiae.

Ohashi K, Kawai S, Murata K.

Eukaryot Cell. 2013 May;12(5):648-53. doi: 10.1128/EC.00339-12. Epub 2013 Mar 1.

9.

NADH-reductive stress in Saccharomyces cerevisiae induces the expression of the minor isoform of glyceraldehyde-3-phosphate dehydrogenase (TDH1).

Valadi H, Valadi A, Ansell R, Gustafsson L, Adler L, Norbeck J, Blomberg A.

Curr Genet. 2004 Feb;45(2):90-5. Epub 2003 Dec 2.

PMID:
14652693
10.

Effect of natural oestrogens on tryptophan metabolism: evidence for interference of oestrogens with kynureninase.

Wolf H, Walter S, Brown RR, Arend RA.

Scand J Clin Lab Invest. 1980 Feb;40(1):15-22.

PMID:
7367807
12.

Engineering of the metabolism of Saccharomyces cerevisiae for anaerobic production of mannitol.

Costenoble R, Adler L, Niklasson C, Lidén G.

FEMS Yeast Res. 2003 Mar;3(1):17-25.

13.

NAD+ biosynthesis and metabolic fluxes of tryptophan in hepatocytes isolated from rats fed a clofibrate-containing diet.

Shin M, Mori Y, Kimura A, Fujita Y, Yoshida K, Sano K, Umezawa C.

Biochem Pharmacol. 1996 Jul 26;52(2):247-52.

PMID:
8694849
14.
15.

Isolation and characterization of the Saccharomyces cerevisiae XPT1 gene encoding xanthine phosphoribosyl transferase.

Guetsova ML, Crother TR, Taylor MW, Daignan-Fornier B.

J Bacteriol. 1999 May;181(9):2984-6.

16.

Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.

Almeida JR, Bertilsson M, Hahn-Hägerdal B, Lidén G, Gorwa-Grauslund MF.

Appl Microbiol Biotechnol. 2009 Sep;84(4):751-61. doi: 10.1007/s00253-009-2053-1. Epub 2009 Jun 9.

PMID:
19506862
18.

Tryptophan metabolism along the kynurenine pathway in diet-induced and genetic hypercholesterolemic rabbits.

Allegri G, Ragazzi E, Costa CV, Caparrotta L, Biasiolo M, Comai S, Bertazzo A.

Clin Chim Acta. 2004 Dec;350(1-2):41-9.

PMID:
15530458
19.

NAD+ biosynthesis from tryptophan in the presence of nicotinic acid or vice versa by rat hepatocytes--effect of clofibrate-feeding.

Shin M, Nakakita S, Hashimoto C, Sano K, Umezawa C.

Int J Vitam Nutr Res. 1998;68(2):104-8.

PMID:
9565825
20.

Quantitation of NAD+ biosynthesis from the salvage pathway in Saccharomyces cerevisiae.

Sporty J, Lin SJ, Kato M, Ognibene T, Stewart B, Turteltaub K, Bench G.

Yeast. 2009 Jul;26(7):363-9. doi: 10.1002/yea.1671.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk