Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 115

1.

Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinones.

Bond DR, Lovley DR.

Environ Microbiol. 2002 Feb;4(2):115-24.

PMID:
11972621
2.

Role of humic acid and ouinone model compounds in bromate reduction by zerovalent iron.

Xie L, Shang C.

Environ Sci Technol. 2005 Feb 15;39(4):1092-100.

PMID:
15773482
3.
4.

Competition of Fe(III) reduction and methanogenesis in an acidic fen.

Reiche M, Torburg G, K├╝sel K.

FEMS Microbiol Ecol. 2008 Jul;65(1):88-101. doi: 10.1111/j.1574-6941.2008.00523.x.

5.

Fe(III) oxide reduction and carbon tetrachloride dechlorination by a newly isolated Klebsiella pneumoniae strain L17.

Li XM, Zhou SG, Li FB, Wu CY, Zhuang L, Xu W, Liu L.

J Appl Microbiol. 2009 Jan;106(1):130-9. doi: 10.1111/j.1365-2672.2008.03985.x. Epub 2008 Nov 29.

6.

Role of humic-bound iron as an electron transfer agent in dissimilatory Fe(III) reduction.

Lovley DR, Blunt-Harris EL.

Appl Environ Microbiol. 1999 Sep;65(9):4252-4.

7.

Influence of sediment components on the immobilization of Zn during microbial Fe-(hydr)oxide reduction.

Coby AJ, Picardal FW.

Environ Sci Technol. 2006 Jun 15;40(12):3813-8.

PMID:
16830547
8.

Direct inhibition of methanogenesis by ferric iron.

Bodegom PM, Scholten JC, Stams AJ.

FEMS Microbiol Ecol. 2004 Aug 1;49(2):261-8. doi: 10.1016/j.femsec.2004.03.017.

9.

Dissimilatory Fe(III) and Mn(IV) reduction.

Lovley DR, Holmes DE, Nevin KP.

Adv Microb Physiol. 2004;49:219-86. Review.

PMID:
15518832
10.

Methanogenesis affected by the co-occurrence of iron(III) oxides and humic substances.

Zhou S, Xu J, Yang G, Zhuang L.

FEMS Microbiol Ecol. 2014 Apr;88(1):107-20. doi: 10.1111/1574-6941.12274. Epub 2014 Jan 21.

11.

Measurement of iron(III) bioavailability in pure iron oxide minerals and soils using anthraquinone-2,6-disulfonate oxidation.

Hacherl EL, Kosson DS, Young LY, Cowan RM.

Environ Sci Technol. 2001 Dec 15;35(24):4886-93.

PMID:
11775166
12.

Alkaline extracellular reduction: isolation and characterization of an alkaliphilic and halotolerant bacterium, Bacillus pseudofirmus MC02.

Ma C, Zhuang L, Zhou SG, Yang GQ, Yuan Y, Xu RX.

J Appl Microbiol. 2012 May;112(5):883-91. doi: 10.1111/j.1365-2672.2012.05276.x. Epub 2012 Mar 28.

13.

Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1.

Fredrickson JK, Kostandarithes HM, Li SW, Plymale AE, Daly MJ.

Appl Environ Microbiol. 2000 May;66(5):2006-11.

14.
15.

[Isolation and characterization of a facultative anaerobe Pantoea agglomerans MFC-3 and its humic substance-and Fe(III) - respiring activity].

Wu CY, Li FB, Zhou SG, Zhuang L, Wang YQ.

Huan Jing Ke Xue. 2010 Jan;31(1):237-42. Chinese.

PMID:
20329545
16.

Effect of Fe(III) on the bromate reduction by humic substances in aqueous solution.

Xie L, Shang C, Zhou Q.

J Environ Sci (China). 2008;20(3):257-61.

PMID:
18595389
17.

Microbial reduction of U(VI) at the solid-water interface.

Jeon OH, Kelly SD, Kemner KM, Barnett MO, Burgos WD, Dempsey BA, Roden EE.

Environ Sci Technol. 2004 Nov 1;38(21):5649-55.

PMID:
15575284
18.
19.

Humic substance-mediated reduction of iron(III) oxides and degradation of 2,4-D by an alkaliphilic bacterium, Corynebacterium humireducens MFC-5.

Wu CY, Zhuang L, Zhou SG, Yuan Y, Yuan T, Li FB.

Microb Biotechnol. 2013 Mar;6(2):141-9. doi: 10.1111/1751-7915.12003. Epub 2012 Dec 6.

20.

Geochemical control of microbial Fe(III) reduction potential in wetlands: comparison of the rhizosphere to non-rhizosphere soil.

Weiss JV, Emerson D, Megonigal JP.

FEMS Microbiol Ecol. 2004 Apr 1;48(1):89-100. doi: 10.1016/j.femsec.2003.12.014.

Items per page

Supplemental Content

Write to the Help Desk