Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 142

1.

Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization.

Li M, Chen D, Shiloh A, Luo J, Nikolaev AY, Qin J, Gu W.

Nature. 2002 Apr 11;416(6881):648-53. Epub 2002 Mar 31.

PMID:
11923872
2.

Loss of HAUSP-mediated deubiquitination contributes to DNA damage-induced destabilization of Hdmx and Hdm2.

Meulmeester E, Maurice MM, Boutell C, Teunisse AF, Ovaa H, Abraham TE, Dirks RW, Jochemsen AG.

Mol Cell. 2005 May 27;18(5):565-76. Erratum in: Mol Cell. 2005 Jul 1;19(1):143-4.

3.

A dynamic role of HAUSP in the p53-Mdm2 pathway.

Li M, Brooks CL, Kon N, Gu W.

Mol Cell. 2004 Mar 26;13(6):879-86.

4.

Dynamics in the p53-Mdm2 ubiquitination pathway.

Brooks CL, Gu W.

Cell Cycle. 2004 Jul;3(7):895-9. Epub 2004 Jul 2. Review.

PMID:
15254415
5.

The HAUSP gene plays an important role in non-small cell lung carcinogenesis through p53-dependent pathways.

Masuya D, Huang C, Liu D, Nakashima T, Yokomise H, Ueno M, Nakashima N, Sumitomo S.

J Pathol. 2006 Apr;208(5):724-32.

PMID:
16450335
6.

HAUSP, a deubiquitinating enzyme for p53, is polyubiquitinated, polyneddylated, and dimerized.

Lee HJ, Kim MS, Kim YK, Oh YK, Baek KH.

FEBS Lett. 2005 Aug 29;579(21):4867-72.

7.

HAUSP is required for p53 destabilization.

Cummins JM, Vogelstein B.

Cell Cycle. 2004 Jun;3(6):689-92. Epub 2004 Jun 14.

PMID:
15118411
8.

The tumour suppressor RASSF1A promotes MDM2 self-ubiquitination by disrupting the MDM2-DAXX-HAUSP complex.

Song MS, Song SJ, Kim SY, Oh HJ, Lim DS.

EMBO J. 2008 Jul 9;27(13):1863-74. doi: 10.1038/emboj.2008.115. Epub 2008 Jun 19.

9.

The conformationally flexible S9-S10 linker region in the core domain of p53 contains a novel MDM2 binding site whose mutation increases ubiquitination of p53 in vivo.

Shimizu H, Burch LR, Smith AJ, Dornan D, Wallace M, Ball KL, Hupp TR.

J Biol Chem. 2002 Aug 9;277(32):28446-58. Epub 2002 Mar 29.

10.

An N-terminal p14ARF peptide blocks Mdm2-dependent ubiquitination in vitro and can activate p53 in vivo.

Midgley CA, Desterro JM, Saville MK, Howard S, Sparks A, Hay RT, Lane DP.

Oncogene. 2000 May 4;19(19):2312-23.

11.

Mdm-2 and ubiquitin-independent p53 proteasomal degradation regulated by NQO1.

Asher G, Lotem J, Sachs L, Kahana C, Shaul Y.

Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):13125-30. Epub 2002 Sep 13.

12.

C-terminal region of USP7/HAUSP is critical for deubiquitination activity and contains a second mdm2/p53 binding site.

Ma J, Martin JD, Xue Y, Lor LA, Kennedy-Wilson KM, Sinnamon RH, Ho TF, Zhang G, Schwartz B, Tummino PJ, Lai Z.

Arch Biochem Biophys. 2010 Nov 15;503(2):207-12. doi: 10.1016/j.abb.2010.08.020. Epub 2010 Sep 15.

PMID:
20816748
13.

Molecular recognition of p53 and MDM2 by USP7/HAUSP.

Sheng Y, Saridakis V, Sarkari F, Duan S, Wu T, Arrowsmith CH, Frappier L.

Nat Struct Mol Biol. 2006 Mar;13(3):285-91. Epub 2006 Feb 12.

PMID:
16474402
14.

Functional p53 chimeras containing the Epstein-Barr virus Gly-Ala repeat are protected from Mdm2- and HPV-E6-induced proteolysis.

Heessen S, Leonchiks A, Issaeva N, Sharipo A, Selivanova G, Masucci MG, Dantuma NP.

Proc Natl Acad Sci U S A. 2002 Feb 5;99(3):1532-7. Epub 2002 Jan 22.

15.
16.

The p53-Mdm2 module and the ubiquitin system.

Michael D, Oren M.

Semin Cancer Biol. 2003 Feb;13(1):49-58. Review.

PMID:
12507556
17.

HAUSP-regulated switch from auto- to p53 ubiquitination by Mdm2 (in silico discovery).

Brazhnik P, Kohn KW.

Math Biosci. 2007 Nov;210(1):60-77. Epub 2007 May 23.

PMID:
17585950
18.
19.

The ubiquitin ligase COP1 is a critical negative regulator of p53.

Dornan D, Wertz I, Shimizu H, Arnott D, Frantz GD, Dowd P, O'Rourke K, Koeppen H, Dixit VM.

Nature. 2004 May 6;429(6987):86-92. Epub 2004 Apr 21.

PMID:
15103385
20.

HAUSP as a therapeutic target for hematopoietic tumors (review).

Cheon KW, Baek KH.

Int J Oncol. 2006 May;28(5):1209-15. Review.

PMID:
16596237
Items per page

Supplemental Content

Write to the Help Desk