Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 168

Similar articles for PubMed (Select 10767429)

1.

Contribution of the different modules in the utrophin carboxy-terminal region to the formation and regulation of the DAP complex.

Tommasi di Vignano A, Di Zenzo G, Sudol M, Cesareni G, Dente L.

FEBS Lett. 2000 Apr 14;471(2-3):229-34.

2.

EF-hand domains are involved in the differential cellular distribution of dystrophin Dp40.

Aragón J, Martínez-Herrera A, Bermúdez-Cruz RM, Bazán ML, Soid-Raggi G, Ceja V, Coy-Arechavaleta AS, Alemán V, Depardón F, Montañez C.

Neurosci Lett. 2015 May 21;600:115-120. doi: 10.1016/j.neulet.2015.05.038. [Epub ahead of print]

PMID:
26004254
3.

Versatile communication strategies among tandem WW domain repeats.

Dodson EJ, Fishbain-Yoskovitz V, Rotem-Bamberger S, Schueler-Furman O.

Exp Biol Med (Maywood). 2015 Mar;240(3):351-60. doi: 10.1177/1535370214566558. Epub 2015 Feb 20.

4.

Flexibility in the N-terminal actin-binding domain: clues from in silico mutations and molecular dynamics.

Chakravarty D, Chakraborti S, Chakrabarti P.

Proteins. 2015 Apr;83(4):696-710. doi: 10.1002/prot.24767. Epub 2015 Feb 5.

PMID:
25620004
5.

WW domains of the yes-kinase-associated-protein (YAP) transcriptional regulator behave as independent units with different binding preferences for PPxY motif-containing ligands.

Iglesias-Bexiga M, Castillo F, Cobos ES, Oka T, Sudol M, Luque I.

PLoS One. 2015 Jan 21;10(1):e0113828. doi: 10.1371/journal.pone.0113828. eCollection 2015.

6.

Characterizing WW domain interactions of tumor suppressor WWOX reveals its association with multiprotein networks.

Abu-Odeh M, Bar-Mag T, Huang H, Kim T, Salah Z, Abdeen SK, Sudol M, Reichmann D, Sidhu S, Kim PM, Aqeilan RI.

J Biol Chem. 2014 Mar 28;289(13):8865-80. doi: 10.1074/jbc.M113.506790. Epub 2014 Feb 18.

7.

Molecular basis of the binding of YAP transcriptional regulator to the ErbB4 receptor tyrosine kinase.

Schuchardt BJ, Bhat V, Mikles DC, McDonald CB, Sudol M, Farooq A.

Biochimie. 2014 Jun;101:192-202. doi: 10.1016/j.biochi.2014.01.011. Epub 2014 Jan 25.

8.

Cholesterol favors the anchorage of human dystrophin repeats 16 to 21 in membrane at physiological surface pressure.

Ameziane-Le Hir S, Raguénès-Nicol C, Paboeuf G, Nicolas A, Le Rumeur E, Vié V.

Biochim Biophys Acta. 2014 May;1838(5):1266-73. doi: 10.1016/j.bbamem.2014.01.010. Epub 2014 Jan 16.

9.

Molecular origin of the binding of WWOX tumor suppressor to ErbB4 receptor tyrosine kinase.

Schuchardt BJ, Bhat V, Mikles DC, McDonald CB, Sudol M, Farooq A.

Biochemistry. 2013 Dec 23;52(51):9223-36. doi: 10.1021/bi400987k. Epub 2013 Dec 13.

10.

The ZZ domain of dystrophin in DMD: making sense of missense mutations.

Vulin A, Wein N, Strandjord DM, Johnson EK, Findlay AR, Maiti B, Howard MT, Kaminoh YJ, Taylor LE, Simmons TR, Ray WC, Montanaro F, Ervasti JM, Flanigan KM.

Hum Mutat. 2014 Feb;35(2):257-64. doi: 10.1002/humu.22479. Epub 2013 Dec 2.

11.

Structural coupling of the EF hand and C-terminal GTPase domains in the mitochondrial protein Miro.

Klosowiak JL, Focia PJ, Chakravarthy S, Landahl EC, Freymann DM, Rice SE.

EMBO Rep. 2013 Nov;14(11):968-74. doi: 10.1038/embor.2013.151. Epub 2013 Sep 27.

12.

Molecular clues about the dystrophin-neuronal nitric oxide synthase interaction: a theoretical approach.

Giudice E, Molza AE, Laurin Y, Nicolas A, Le Rumeur E, Delalande O.

Biochemistry. 2013 Nov 5;52(44):7777-84. doi: 10.1021/bi400794p. Epub 2013 Oct 25.

PMID:
24063785
13.

Description of a utrophin associated protein complex in lipid raft domains of human artery smooth muscle cells.

Palma-Flores C, Ramírez-Sánchez I, Rosas-Vargas H, Canto P, Coral-Vázquez RM.

Biochim Biophys Acta. 2014 Mar;1838(3):1047-54. doi: 10.1016/j.bbamem.2013.09.010. Epub 2013 Sep 20.

PMID:
24060563
14.

Dystrophin complex functions as a scaffold for signalling proteins.

Constantin B.

Biochim Biophys Acta. 2014 Feb;1838(2):635-42. doi: 10.1016/j.bbamem.2013.08.023. Epub 2013 Sep 7. Review.

15.

Novel mechanism of regulation of protein 4.1G binding properties through Ca2+/calmodulin-mediated structural changes.

Nunomura W, Jinbo Y, Isozumi N, Ohki S, Izumi Y, Matsushima N, Takakuwa Y.

Cell Biochem Biophys. 2013 Jul;66(3):545-58. doi: 10.1007/s12013-012-9502-7.

PMID:
23354586
16.

Calcium tips the balance: a microtubule plus end to lattice binding switch operates in the carboxyl terminus of BPAG1n4.

Kapur M, Wang W, Maloney MT, Millan I, Lundin VF, Tran TA, Yang Y.

EMBO Rep. 2012 Nov 6;13(11):1021-9. doi: 10.1038/embor.2012.140. Epub 2012 Sep 21.

17.

The crystal structures of dystrophin and utrophin spectrin repeats: implications for domain boundaries.

Muthu M, Richardson KA, Sutherland-Smith AJ.

PLoS One. 2012;7(7):e40066. doi: 10.1371/journal.pone.0040066. Epub 2012 Jul 20.

18.

Drp2 and periaxin form Cajal bands with dystroglycan but have distinct roles in Schwann cell growth.

Sherman DL, Wu LM, Grove M, Gillespie CS, Brophy PJ.

J Neurosci. 2012 Jul 4;32(27):9419-28. doi: 10.1523/JNEUROSCI.1220-12.2012.

19.

Impacts of dystrophin and utrophin domains on actin structural dynamics: implications for therapeutic design.

Lin AY, Prochniewicz E, Henderson DM, Li B, Ervasti JM, Thomas DD.

J Mol Biol. 2012 Jun 29;420(1-2):87-98. doi: 10.1016/j.jmb.2012.04.005. Epub 2012 Apr 11.

20.

Structural and functional discussion of the tetra-trico-peptide repeat, a protein interaction module.

Zeytuni N, Zarivach R.

Structure. 2012 Mar 7;20(3):397-405. doi: 10.1016/j.str.2012.01.006. Review.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk