Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 134

Similar articles for PubMed (Select 10543814)

1.

Bacterial adhesion at synthetic surfaces.

Cunliffe D, Smart CA, Alexander C, Vulfson EN.

Appl Environ Microbiol. 1999 Nov;65(11):4995-5002.

2.

Quantitatively predicting bacterial adhesion using surface free energy determined with a spectrophotometric method.

Zhang X, Zhang Q, Yan T, Jiang Z, Zhang X, Zuo YY.

Environ Sci Technol. 2015 May 19;49(10):6164-71. doi: 10.1021/es5050425. Epub 2015 May 4.

PMID:
25898026
3.

Fabrication of a platform to isolate the influences of surface nanotopography from chemistry on bacterial attachment and growth.

Pegalajar-Jurado A, Easton CD, Crawford RJ, McArthur SL.

Biointerphases. 2015 Mar 26;10(1):011002. doi: 10.1116/1.4913377.

PMID:
25720764
4.

The effect of surface properties of polycrystalline, single phase metal coatings on bacterial retention.

Whitehead KA, Olivier S, Benson PS, Arneborg N, Verran J, Kelly P.

Int J Food Microbiol. 2015 Mar 16;197:92-7. doi: 10.1016/j.ijfoodmicro.2014.12.030. Epub 2015 Jan 3.

PMID:
25576986
5.
6.

Bridging adhesion of mussel-inspired peptides: role of charge, chain length, and surface type.

Wei W, Yu J, Gebbie MA, Tan Y, Martinez Rodriguez NR, Israelachvili JN, Waite JH.

Langmuir. 2015 Jan 27;31(3):1105-12. doi: 10.1021/la504316q. Epub 2015 Jan 12.

PMID:
25540823
7.

Effect of micro-patterning on bacterial adhesion on polyethylene terephthalate surface.

Wang L, Chen W, Terentjev E.

J Biomater Appl. 2015 May;29(10):1351-62. doi: 10.1177/0885328214563998. Epub 2014 Dec 16.

PMID:
25515774
8.

Bacterial attachment to polymeric materials correlates with molecular flexibility and hydrophilicity.

Sanni O, Chang CY, Anderson DG, Langer R, Davies MC, Williams PM, Williams P, Alexander MR, Hook AL.

Adv Healthc Mater. 2015 Apr 2;4(5):695-701. doi: 10.1002/adhm.201400648. Epub 2014 Dec 9.

9.

Surface physicochemistry and ionic strength affects eDNA's role in bacterial adhesion to abiotic surfaces.

Regina VR, Lokanathan AR, Modrzyński JJ, Sutherland DS, Meyer RL.

PLoS One. 2014 Aug 14;9(8):e105033. doi: 10.1371/journal.pone.0105033. eCollection 2014.

10.

Bacterial adhesion efficiency on implant abutments: a comparative study.

Etxeberria M, López-Jiménez L, Merlos A, Escuín T, Viñas M.

Int Microbiol. 2013 Dec;16(4):235-42.

PMID:
25102724
11.

Surface treatment of polymeric materials controlling the adhesion of biomolecules.

Poncin-Epaillard F, Vrlinic T, Debarnot D, Mozetic M, Coudreuse A, Legeay G, El Moualij B, Zorzi W.

J Funct Biomater. 2012 Aug 7;3(3):528-43. doi: 10.3390/jfb3030528.

12.

Role of molecular properties of ulvans on their ability to elaborate antiadhesive surfaces.

Gadenne V, Lebrun L, Jouenne T, Thebault P.

J Biomed Mater Res A. 2015 Mar;103(3):1021-8. doi: 10.1002/jbm.a.35245. Epub 2014 Jun 13.

PMID:
24890284
13.

Bacterial resistance of self-assembled surfaces using PPOm-b-PSBMAn zwitterionic copolymer - concomitant effects of surface topography and surface chemistry on attachment of live bacteria.

Hsiao SW, Venault A, Yang HS, Chang Y.

Colloids Surf B Biointerfaces. 2014 Jun 1;118:254-60. doi: 10.1016/j.colsurfb.2014.03.051. Epub 2014 Apr 6.

PMID:
24794801
14.

Thermodynamic analysis of marine bacterial attachment to oligo(ethylene glycol)-terminated self-assembled monolayers.

Ista LK, López GP.

Biointerphases. 2013 Dec;8(1):24. doi: 10.1186/1559-4106-8-24. Epub 2013 Sep 3.

PMID:
24706137
15.

Influence of poly(ethylene oxide)-based copolymer on protein adsorption and bacterial adhesion on stainless steel: modulation by surface hydrophobicity.

Yang Y, Rouxhet PG, Chudziak D, Telegdi J, Dupont-Gillain CC.

Bioelectrochemistry. 2014 Jun;97:127-36. doi: 10.1016/j.bioelechem.2013.09.007. Epub 2013 Oct 12.

PMID:
24650936
16.

Nanoscale engineering of low-fouling surfaces through polydopamine immobilisation of zwitterionic peptides.

Cui J, Ju Y, Liang K, Ejima H, Lörcher S, Gause KT, Richardson JJ, Caruso F.

Soft Matter. 2014 Apr 21;10(15):2656-63. doi: 10.1039/c3sm53056f.

PMID:
24647351
18.

Easy come easy go: surfaces containing immobilized nanoparticles or isolated polycation chains facilitate removal of captured Staphylococcus aureus by retarding bacterial bond maturation.

Fang B, Jiang Y, Rotello VM, Nüsslein K, Santore MM.

ACS Nano. 2014 Feb 25;8(2):1180-90. doi: 10.1021/nn405845y. Epub 2014 Jan 14.

PMID:
24422487
19.

The role of bacterial surface and substratum hydrophobicity in adhesion ofLeptospira biflexa serovarpatoc 1 to inert surfaces.

Kefford B, Marshall KC.

Microb Ecol. 1986 Dec;12(4):315-22. doi: 10.1007/BF02098572.

PMID:
24212922
20.

New hybrid materials based on poly(ethyleneoxide)-grafted polysilazane by hydrosilylation and their anti-fouling activities.

Nguyen TD, Perrin FX, Nguyen DL.

Beilstein J Nanotechnol. 2013 Oct 21;4:671-7. doi: 10.3762/bjnano.4.75. eCollection 2013.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk