Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 111

PubMed (Weighted) Links for Nucleotide (Select 372099081)

1.

Lack of the protein tyrosine phosphatase PTPN22 strengthens transplant tolerance to pancreatic islets in mice.

Fousteri G, Jofra T, Di Fonte R, Gagliani N, Morsiani C, Stabilini A, Battaglia M.

Diabetologia. 2015 Jun;58(6):1319-28. doi: 10.1007/s00125-015-3540-9. Epub 2015 Mar 7.

PMID:
25748328
2.

PTPN22 controls virally-induced autoimmune diabetes by modulating cytotoxic T lymphocyte responses in an epitope-specific manner.

Fousteri G, Jofra T, Di Fonte R, Kuka M, Iannacone M, Battaglia M.

Clin Immunol. 2015 Feb;156(2):98-108. doi: 10.1016/j.clim.2014.12.002. Epub 2014 Dec 13.

PMID:
25513733
3.

The tyrosine phosphatase PTPN22 discriminates weak self peptides from strong agonist TCR signals.

Salmond RJ, Brownlie RJ, Morrison VL, Zamoyska R.

Nat Immunol. 2014 Sep;15(9):875-83. doi: 10.1038/ni.2958. Epub 2014 Aug 10.

4.

Autoimmunity-associated LYP-W620 does not impair thymic negative selection of autoreactive T cells.

Wu DJ, Zhou W, Enouz S, Orrú V, Stanford SM, Maine CJ, Rapini N, Sawatzke K, Engel I, Fiorillo E, Sherman LA, Kronenberg M, Zehn D, Peterson E, Bottini N.

PLoS One. 2014 Feb 3;9(2):e86677. doi: 10.1371/journal.pone.0086677. eCollection 2014.

5.

PTPN22 controls the germinal center by influencing the numbers and activity of T follicular helper cells.

Maine CJ, Marquardt K, Cheung J, Sherman LA.

J Immunol. 2014 Feb 15;192(4):1415-24. doi: 10.4049/jimmunol.1302418. Epub 2014 Jan 22.

6.

Conserved molecular signatures of neurogenesis in the hippocampal subgranular zone of rodents and primates.

Miller JA, Nathanson J, Franjic D, Shim S, Dalley RA, Shapouri S, Smith KA, Sunkin SM, Bernard A, Bennett JL, Lee CK, Hawrylycz MJ, Jones AR, Amaral DG, Šestan N, Gage FH, Lein ES.

Development. 2013 Nov;140(22):4633-44. doi: 10.1242/dev.097212. Epub 2013 Oct 23.

7.

Protein tyrosine phosphatase non-receptor type 22 modulates NOD2-induced cytokine release and autophagy.

Spalinger MR, Lang S, Vavricka SR, Fried M, Rogler G, Scharl M.

PLoS One. 2013 Aug 26;8(8):e72384. doi: 10.1371/journal.pone.0072384. eCollection 2013.

8.

PTPN22 modulates macrophage polarization and susceptibility to dextran sulfate sodium-induced colitis.

Chang HH, Miaw SC, Tseng W, Sun YW, Liu CC, Tsao HW, Ho IC.

J Immunol. 2013 Sep 1;191(5):2134-43. doi: 10.4049/jimmunol.1203363. Epub 2013 Aug 2.

9.

The autoimmunity-associated gene PTPN22 potentiates toll-like receptor-driven, type 1 interferon-dependent immunity.

Wang Y, Shaked I, Stanford SM, Zhou W, Curtsinger JM, Mikulski Z, Shaheen ZR, Cheng G, Sawatzke K, Campbell AM, Auger JL, Bilgic H, Shoyama FM, Schmeling DO, Balfour HH Jr, Hasegawa K, Chan AC, Corbett JA, Binstadt BA, Mescher MF, Ley K, Bottini N, Peterson EJ.

Immunity. 2013 Jul 25;39(1):111-22. doi: 10.1016/j.immuni.2013.06.013. Epub 2013 Jul 18.

10.

Different modulation of Ptpn22 in effector and regulatory T cells leads to attenuation of autoimmune diabetes in transgenic nonobese diabetic mice.

Yeh LT, Miaw SC, Lin MH, Chou FC, Shieh SJ, Chuang YP, Lin SH, Chang DM, Sytwu HK.

J Immunol. 2013 Jul 15;191(2):594-607. doi: 10.4049/jimmunol.1203380. Epub 2013 Jun 10.

11.

A disease-associated PTPN22 variant promotes systemic autoimmunity in murine models.

Dai X, James RG, Habib T, Singh S, Jackson S, Khim S, Moon RT, Liggitt D, Wolf-Yadlin A, Buckner JH, Rawlings DJ.

J Clin Invest. 2013 May;123(5):2024-36. doi: 10.1172/JCI66963. Epub 2013 Apr 24.

12.

Transcriptional corepressors HIPK1 and HIPK2 control angiogenesis via TGF-β-TAK1-dependent mechanism.

Shang Y, Doan CN, Arnold TD, Lee S, Tang AA, Reichardt LF, Huang EJ.

PLoS Biol. 2013;11(4):e1001527. doi: 10.1371/journal.pbio.1001527. Epub 2013 Apr 2.

13.

PTPN22 silencing in the NOD model indicates the type 1 diabetes-associated allele is not a loss-of-function variant.

Zheng P, Kissler S.

Diabetes. 2013 Mar;62(3):896-904. doi: 10.2337/db12-0929. Epub 2012 Nov 28.

14.

Lack of the phosphatase PTPN22 increases adhesion of murine regulatory T cells to improve their immunosuppressive function.

Brownlie RJ, Miosge LA, Vassilakos D, Svensson LM, Cope A, Zamoyska R.

Sci Signal. 2012 Nov 27;5(252):ra87. doi: 10.1126/scisignal.2003365.

PMID:
23193160
15.

Transcription factor Foxp3 and its protein partners form a complex regulatory network.

Rudra D, deRoos P, Chaudhry A, Niec RE, Arvey A, Samstein RM, Leslie C, Shaffer SA, Goodlett DR, Rudensky AY.

Nat Immunol. 2012 Oct;13(10):1010-9. doi: 10.1038/ni.2402. Epub 2012 Aug 26.

16.

Telomeric 3' overhangs derive from resection by Exo1 and Apollo and fill-in by POT1b-associated CST.

Wu P, Takai H, de Lange T.

Cell. 2012 Jul 6;150(1):39-52. doi: 10.1016/j.cell.2012.05.026. Epub 2012 Jun 28.

17.

Homeodomain-interacting protein kinase (HIPK)-1 is required for splenic B cell homeostasis and optimal T-independent type 2 humoral response.

Guerra FM, Gommerman JL, Corfe SA, Paige CJ, Rottapel R.

PLoS One. 2012;7(4):e35533. doi: 10.1371/journal.pone.0035533. Epub 2012 Apr 24.

18.

PTPN22 alters the development of regulatory T cells in the thymus.

Maine CJ, Hamilton-Williams EE, Cheung J, Stanford SM, Bottini N, Wicker LS, Sherman LA.

J Immunol. 2012 Jun 1;188(11):5267-75. doi: 10.4049/jimmunol.1200150. Epub 2012 Apr 25.

19.

Mdm2 associates with Ras effector NORE1 to induce the degradation of oncoprotein HIPK1.

Lee D, Park SJ, Sung KS, Park J, Lee SB, Park SY, Lee HJ, Ahn JW, Choi SJ, Lee SG, Kim SH, Kim DH, Kim J, Kim Y, Choi CY.

EMBO Rep. 2012 Feb 1;13(2):163-9. doi: 10.1038/embor.2011.235.

20.

Wnt signaling has opposing roles in the developing and the adult brain that are modulated by Hipk1.

Marinaro C, Pannese M, Weinandy F, Sessa A, Bergamaschi A, Taketo MM, Broccoli V, Comi G, Götz M, Martino G, Muzio L.

Cereb Cortex. 2012 Oct;22(10):2415-27. doi: 10.1093/cercor/bhr320. Epub 2011 Nov 17.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk