Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 45

PubMed (GeneRIF) Links for Gene (Select 851204)

1.

Perturbations to the ubiquitin conjugate proteome in yeast δubx mutants identify Ubx2 as a regulator of membrane lipid composition.

Kolawa N, Sweredoski MJ, Graham RL, Oania R, Hess S, Deshaies RJ.

Mol Cell Proteomics. 2013 Oct;12(10):2791-803. doi: 10.1074/mcp.M113.030163. Epub 2013 Jun 22.

2.

Pervasive and dynamic protein binding sites of the mRNA transcriptome in Saccharomyces cerevisiae.

Freeberg MA, Han T, Moresco JJ, Kong A, Yang YC, Lu ZJ, Yates JR, Kim JK.

Genome Biol. 2013 Feb 14;14(2):R13. doi: 10.1186/gb-2013-14-2-r13.

3.

Identification of dosage-sensitive genes in Saccharomyces cerevisiae using the genetic tug-of-war method.

Makanae K, Kintaka R, Makino T, Kitano H, Moriya H.

Genome Res. 2013 Feb;23(2):300-11. doi: 10.1101/gr.146662.112. Epub 2012 Dec 28.

4.

Scp160-dependent mRNA trafficking mediates pheromone gradient sensing and chemotropism in yeast.

Gelin-Licht R, Paliwal S, Conlon P, Levchenko A, Gerst JE.

Cell Rep. 2012 May 31;1(5):483-94. doi: 10.1016/j.celrep.2012.03.004. Epub 2012 Apr 20.

5.

Constitutive dynein activity in She1 mutants reveals differences in microtubule attachment at the yeast spindle pole body.

Bergman ZJ, Xia X, Amaro IA, Huffaker TC.

Mol Biol Cell. 2012 Jun;23(12):2319-26. doi: 10.1091/mbc.E12-03-0223. Epub 2012 Apr 25.

6.

Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs.

Sharifpoor S, van Dyk D, Costanzo M, Baryshnikova A, Friesen H, Douglas AC, Youn JY, VanderSluis B, Myers CL, Papp B, Boone C, Andrews BJ.

Genome Res. 2012 Apr;22(4):791-801. doi: 10.1101/gr.129213.111. Epub 2012 Jan 26.

7.

Characterization of a highly conserved histone related protein, Ydl156w, and its functional associations using quantitative proteomic analyses.

Gilmore JM, Sardiu ME, Venkatesh S, Stutzman B, Peak A, Seidel CW, Workman JL, Florens L, Washburn MP.

Mol Cell Proteomics. 2012 Apr;11(4):M111.011544. doi: 10.1074/mcp.M111.011544. Epub 2011 Dec 22.

8.

Sites of ubiquitin attachment in Saccharomyces cerevisiae.

Starita LM, Lo RS, Eng JK, von Haller PD, Fields S.

Proteomics. 2012 Jan;12(2):236-40. doi: 10.1002/pmic.201100166. Epub 2011 Dec 20.

9.

Two single-headed myosin V motors bound to a tetrameric adapter protein form a processive complex.

Krementsova EB, Hodges AR, Bookwalter CS, Sladewski TE, Travaglia M, Sweeney HL, Trybus KM.

J Cell Biol. 2011 Nov 14;195(4):631-41. doi: 10.1083/jcb.201106146.

10.

A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria.

Hoppins S, Collins SR, Cassidy-Stone A, Hummel E, Devay RM, Lackner LL, Westermann B, Schuldiner M, Weissman JS, Nunnari J.

J Cell Biol. 2011 Oct 17;195(2):323-40. doi: 10.1083/jcb.201107053. Epub 2011 Oct 10.

11.

A perturbed ubiquitin landscape distinguishes between ubiquitin in trafficking and in proteolysis.

Ziv I, Matiuhin Y, Kirkpatrick DS, Erpapazoglou Z, Leon S, Pantazopoulou M, Kim W, Gygi SP, Haguenauer-Tsapis R, Reis N, Glickman MH, Kleifeld O.

Mol Cell Proteomics. 2011 May;10(5):M111.009753. doi: 10.1074/mcp.M111.009753. Epub 2011 Mar 22.

12.

UNC-45/CRO1/She4p (UCS) protein forms elongated dimer and joins two myosin heads near their actin binding region.

Shi H, Blobel G.

Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21382-7. doi: 10.1073/pnas.1013038107. Epub 2010 Nov 29.

13.
14.

Functional surfaces on the actin-binding protein coronin revealed by systematic mutagenesis.

Gandhi M, Jangi M, Goode BL.

J Biol Chem. 2010 Nov 5;285(45):34899-908. doi: 10.1074/jbc.M110.171496. Epub 2010 Sep 2.

15.

A surveillance pathway monitors the fitness of the endoplasmic reticulum to control its inheritance.

Babour A, Bicknell AA, Tourtellotte J, Niwa M.

Cell. 2010 Jul 23;142(2):256-69. doi: 10.1016/j.cell.2010.06.006. Epub 2010 Jul 8.

16.

Cdc48 and Ufd3, new partners of the ubiquitin protease Ubp3, are required for ribophagy.

Ossareh-Nazari B, Bonizec M, Cohen M, Dokudovskaya S, Delalande F, Schaeffer C, Van Dorsselaer A, Dargemont C.

EMBO Rep. 2010 Jul;11(7):548-54. doi: 10.1038/embor.2010.74. Epub 2010 May 28.

17.

Multiple Myo4 motors enhance ASH1 mRNA transport in Saccharomyces cerevisiae.

Chung S, Takizawa PA.

J Cell Biol. 2010 May 17;189(4):755-67. doi: 10.1083/jcb.200912011. Epub 2010 May 10.

18.

The structure of the Myo4p globular tail and its function in ASH1 mRNA localization.

Heuck A, Fetka I, Brewer DN, Hüls D, Munson M, Jansen RP, Niessing D.

J Cell Biol. 2010 May 3;189(3):497-510. doi: 10.1083/jcb.201002076.

19.

Essential features of the class V myosin from budding yeast for ASH1 mRNA transport.

Bookwalter CS, Lord M, Trybus KM.

Mol Biol Cell. 2009 Jul;20(14):3414-21. doi: 10.1091/mbc.E08-08-0801. Epub 2009 May 28.

20.

She3p possesses a novel activity required for ASH1 mRNA localization in Saccharomyces cerevisiae.

Landers SM, Gallas MR, Little J, Long RM.

Eukaryot Cell. 2009 Jul;8(7):1072-83. doi: 10.1128/EC.00084-09. Epub 2009 May 8.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk