Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 111

1.

Muscarinic receptor antagonism causes a functional alteration in nucleus accumbens mu-opiate-mediated feeding behavior.

Perry ML, Baldo BA, Andrzejewski ME, Kelley AE.

Behav Brain Res. 2009 Jan 30;197(1):225-9. doi: 10.1016/j.bbr.2008.08.002. Epub 2008 Aug 12.

PMID:
18761381
[PubMed - indexed for MEDLINE]
Free PMC Article
2.

Muscarinic receptor antagonism of the nucleus accumbens core causes avoidance to flavor and spatial cues.

Pratt WE, Spencer RC, Kelley AE.

Behav Neurosci. 2007 Dec;121(6):1215-23.

PMID:
18085875
[PubMed - indexed for MEDLINE]
3.

Food-associated cues alter forebrain functional connectivity as assessed with immediate early gene and proenkephalin expression.

Schiltz CA, Bremer QZ, Landry CF, Kelley AE.

BMC Biol. 2007 Apr 26;5:16.

PMID:
17462082
[PubMed - indexed for MEDLINE]
Free PMC Article
4.

Discrete neurochemical coding of distinguishable motivational processes: insights from nucleus accumbens control of feeding.

Baldo BA, Kelley AE.

Psychopharmacology (Berl). 2007 Apr;191(3):439-59. Epub 2007 Feb 23. Review.

PMID:
17318502
[PubMed - indexed for MEDLINE]
5.

The debate over dopamine's role in reward: the case for incentive salience.

Berridge KC.

Psychopharmacology (Berl). 2007 Apr;191(3):391-431. Epub 2006 Oct 27. Review.

PMID:
17072591
[PubMed - indexed for MEDLINE]
6.

Nucleus accumbens opioids regulate flavor-based preferences in food consumption.

Woolley JD, Lee BS, Fields HL.

Neuroscience. 2006 Nov 17;143(1):309-17.

PMID:
17049180
[PubMed - indexed for MEDLINE]
7.

Striatal opioid peptide gene expression differentially tracks short-term satiety but does not vary with negative energy balance in a manner opposite to hypothalamic NPY.

Will MJ, Vanderheyden WM, Kelley AE.

Am J Physiol Regul Integr Comp Physiol. 2007 Jan;292(1):R217-26. Epub 2006 Aug 24.

PMID:
16931647
[PubMed - indexed for MEDLINE]
8.

Pharmacological characterization of high-fat feeding induced by opioid stimulation of the ventral striatum.

Will MJ, Pratt WE, Kelley AE.

Physiol Behav. 2006 Sep 30;89(2):226-34. Epub 2006 Jul 18.

PMID:
16854442
[PubMed - indexed for MEDLINE]
9.

Appetites and Aversions as Constituents of Instincts.

Craig W.

Proc Natl Acad Sci U S A. 1917 Dec;3(12):685-8. No abstract available.

PMID:
16586767
[PubMed]
Free PMC Article
10.

Sucrose sham feeding on a binge schedule releases accumbens dopamine repeatedly and eliminates the acetylcholine satiety response.

Avena NM, Rada P, Moise N, Hoebel BG.

Neuroscience. 2006;139(3):813-20. Epub 2006 Feb 7.

PMID:
16460879
[PubMed - indexed for MEDLINE]
11.

Striatal muscarinic receptor antagonism reduces 24-h food intake in association with decreased preproenkephalin gene expression.

Pratt WE, Kelley AE.

Eur J Neurosci. 2005 Dec;22(12):3229-40.

PMID:
16367789
[PubMed - indexed for MEDLINE]
12.

Hedonic hot spot in nucleus accumbens shell: where do mu-opioids cause increased hedonic impact of sweetness?

Peciña S, Berridge KC.

J Neurosci. 2005 Dec 14;25(50):11777-86.

PMID:
16354936
[PubMed - indexed for MEDLINE]
Free Article
13.

Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward.

Kelley AE, Baldo BA, Pratt WE, Will MJ.

Physiol Behav. 2005 Dec 15;86(5):773-95. Epub 2005 Nov 14. Review.

PMID:
16289609
[PubMed - indexed for MEDLINE]
14.

A proposed hypothalamic-thalamic-striatal axis for the integration of energy balance, arousal, and food reward.

Kelley AE, Baldo BA, Pratt WE.

J Comp Neurol. 2005 Dec 5;493(1):72-85.

PMID:
16255002
[PubMed - indexed for MEDLINE]
15.

Differential regulation of the consummatory, motivational and anticipatory aspects of feeding behavior by dopaminergic and opioidergic drugs.

Barbano MF, Cador M.

Neuropsychopharmacology. 2006 Jul;31(7):1371-81. Epub 2005 Oct 5.

PMID:
16205784
[PubMed - indexed for MEDLINE]
Free Article
16.

Functional mu opioid receptors are expressed in cholinergic interneurons of the rat dorsal striatum: territorial specificity and diurnal variation.

Jabourian M, Venance L, Bourgoin S, Ozon S, Pérez S, Godeheu G, Glowinski J, Kemel ML.

Eur J Neurosci. 2005 Jun;21(12):3301-9.

PMID:
16026468
[PubMed - indexed for MEDLINE]
17.

Reciprocal opioid-opioid interactions between the ventral tegmental area and nucleus accumbens regions in mediating mu agonist-induced feeding in rats.

Bodnar RJ, Lamonte N, Israel Y, Kandov Y, Ackerman TF, Khaimova E.

Peptides. 2005 Apr;26(4):621-9. Epub 2004 Dec 15.

PMID:
15752577
[PubMed - indexed for MEDLINE]
18.

Beyond the reward hypothesis: alternative functions of nucleus accumbens dopamine.

Salamone JD, Correa M, Mingote SM, Weber SM.

Curr Opin Pharmacol. 2005 Feb;5(1):34-41. Review.

PMID:
15661623
[PubMed - indexed for MEDLINE]
19.

A bi-directional mu-opioid-opioid connection between the nucleus of the accumbens shell and the central nucleus of the amygdala in the rat.

Kim EM, Quinn JG, Levine AS, O'Hare E.

Brain Res. 2004 Dec 10;1029(1):135-9.

PMID:
15533326
[PubMed - indexed for MEDLINE]
20.

The amygdala is critical for opioid-mediated binge eating of fat.

Will MJ, Franzblau EB, Kelley AE.

Neuroreport. 2004 Aug 26;15(12):1857-60.

PMID:
15305124
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk