Rosmarinic acid attenuates β-amyloid-induced oxidative stress via Akt/GSK-3β/Fyn-mediated Nrf2 activation in PC12 cells

Free Radic Biol Med. 2018 May 20:120:114-123. doi: 10.1016/j.freeradbiomed.2018.03.028. Epub 2018 Mar 16.

Abstract

Oxidative stress is an important pathogenic factor in Alzheimer's disease (AD). Recently, nuclear factor E2-related factor 2 (Nrf2) has emerged as a master regulator for the endogenous antioxidant response, and thus represents an attractive therapeutic target against AD. The aim of this study is to test the hypothesis that rosmarinic acid (RosA) attenuates amyloid-β (Aβ)-evoked oxidative stress through activating Nrf2-inducible cellular antioxidant defense system. Here, we reported that RosA attenuated Aβ-induced cellular reactive oxygen species (ROS) generation and lipid hydroperoxides (LPO). Interestingly, knockdown of Nrf2 by plasmid-based short hairpin RNA (shRNA) abrogated, at least in part, RosA-mediated neuroprotection in Aβ-challenged PC12 cells. Mechanistically, RosA enhanced the nuclear translocation of Nrf2 and binding to antioxidant response element (ARE) core element but did not induced Nrf2 transcription. Simultaneously, RosA induced a set of Nrf2 downstream target genes encoding phase-II antioxidant enzymes. Furthermore, RosA enhanced protein kinase B (Akt) phosphorylation, glycogen synthase kinase-3β (GSK-3β) phosphorylation at Ser9, and Fyn phosphorylation. Noteworthy, pharmacological inhibition or gene knockdown studies demonstrated that Akt locate upstream of GSK-3β and regulate Nrf2 through Fyn in the context of PC12 cells pre-incubated with RosA following exposed to Aβ. Conversely, the antioxidant effects of RosA could be blocked by Akt inhibitors LY294002, GSK-3β inhibitor LiCl, Nrf2 shRNA, or Fyn shRNA in Aβ-challenged PC12 cells. Consequently, the antioxidant effects of RosA are mediated predominantly by Akt/GSK-3β/Fyn pathway through increased activity of Nrf2. These results suggest, although do not prove, that RosA can be a promising candidate for neuroprotective treatment of AD.

Keywords: Alzheimer's disease; Nrf2; Oxidative stress; PC12 cells; Rosmarinic acid.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amyloid beta-Peptides / metabolism*
  • Animals
  • Antioxidants / pharmacology*
  • Cinnamates / pharmacology*
  • Depsides / pharmacology*
  • Enzyme Activation / drug effects
  • Glycogen Synthase Kinase 3 beta / metabolism
  • NF-E2-Related Factor 2 / metabolism*
  • Oxidative Stress / drug effects
  • PC12 Cells
  • Proto-Oncogene Proteins c-akt / metabolism
  • Proto-Oncogene Proteins c-fyn / metabolism
  • Rats
  • Rosmarinic Acid
  • Signal Transduction / drug effects*

Substances

  • Amyloid beta-Peptides
  • Antioxidants
  • Cinnamates
  • Depsides
  • NF-E2-Related Factor 2
  • Nfe2l2 protein, rat
  • Fyn protein, rat
  • Proto-Oncogene Proteins c-fyn
  • Glycogen Synthase Kinase 3 beta
  • Proto-Oncogene Proteins c-akt