High-resolution array comparative genomic hybridization of single micrometastatic tumor cells

Nucleic Acids Res. 2008 Apr;36(7):e39. doi: 10.1093/nar/gkn101. Epub 2008 Mar 15.

Abstract

Only few selected cancer cells drive tumor progression and are responsible for therapy resistance. Their specific genomic characteristics, however, are largely unknown because high-resolution genome analysis is currently limited to DNA pooled from many cells. Here, we describe a protocol for array comparative genomic hybridization (array CGH), which enables the detection of DNA copy number changes in single cells. Combining a PCR-based whole genome amplification method with arrays of highly purified BAC clones we could accurately determine known chromosomal changes such as trisomy 21 in single leukocytes as well as complex genomic imbalances of single cell line cells. In single T47D cells aberrant regions as small as 1-2 Mb were identified in most cases when compared to non-amplified DNA from 10(6) cells. Most importantly, in single micrometastatic cancer cells isolated from bone marrow of breast cancer patients, we retrieved and confirmed amplifications as small as 4.4 and 5 Mb. Thus, high-resolution genome analysis of single metastatic precursor cells is now possible and may be used for the identification of novel therapy target genes.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Breast Neoplasms / pathology
  • Cell Line, Tumor
  • Chromosomes, Artificial, Bacterial
  • DNA, Bacterial / analysis
  • DNA, Bacterial / isolation & purification
  • DNA, Neoplasm / analysis*
  • Female
  • Gene Dosage
  • Genomics / methods
  • Humans
  • Male
  • Neoplasm Metastasis / genetics*
  • Neoplastic Stem Cells / chemistry*
  • Oligonucleotide Array Sequence Analysis / methods*
  • Polymerase Chain Reaction

Substances

  • DNA, Bacterial
  • DNA, Neoplasm