Magnesium and the role of MgtC in growth of Salmonella typhimurium

Infect Immun. 1998 Aug;66(8):3802-9. doi: 10.1128/IAI.66.8.3802-3809.1998.

Abstract

Salmonella typhimurium has three distinct transport systems for Mg2+: CorA, MgtA, and MgtB. The mgtCB operon encodes two proteins, MgtC, a hydrophobic protein with a predicted molecular mass of 22.5 kDa, and MgtB, a 102-kDa P-type ATPase Mg2+ transport protein. The mgtCB locus has been identified as part of a new Salmonella pathogenicity island, SPI-3. Transcription of mgtCB is regulated by extracellular Mg2+ via the two-component PhoPQ regulatory system important for virulence. To elucidate MgtC's role in a low-Mg2+ environment, we looked at growth and transport in strains lacking the CorA and MgtA Mg2+ transporters but expressing MgtB, MgtC, or both. mgtC mgtB+ and mgtC+ mgtB+ strains exhibited growth in N minimal medium without added Mg2+ with a 1- to 2-h lag phase. An mgtC+ mgtB strain was also able to grow in N minimal medium without added Mg2+ but only after a 24-h lag phase. In N minimal medium containing 10 mM Mg2+, all strains grew after a short lag phase; the mgtC+ mgtB strain grew to a higher optical density at 600 nm than an mgtC+ mgtB+ strain and was comparable to wild type. The lengthy lag phase before growth in an mgtC+ mgtB strain was not due to lack of expression of MgtC. Western blot analysis indicated that substantial MgtC protein is present by 2 h after suspension in N minimal medium. Surprisingly, in an mgtC+ mgtB+ strain, MgtC was undetectable during Mg2+ starvation, although large amounts of MgtB were observed. The lack of expression of MgtC is not dependent on functional MgtB, since a strain carrying a nonfunctional MgtB with a mutation (D379A) also did not make MgtC. Since, during invasion of eukaryotic cells, S. typhimurium appears to be exposed to a low-pH as well as a low-Mg2+ environment, the growth of an mgtC+ mgtB strain was tested at low pH with and without added Mg2+. While significant quantities of MgtC could be detected after suspension at pH 5.2, the mgtC+ mgtB strain was unable to grow at pH 5.2 whether or not Mg2+ was present. Finally, using 63Ni2+ and 57Co2+ as alternative substrates for the unavailable 28Mg2+, cation uptake could not be detected in an mgtC+ mgtB strain after Mg2+ starvation. We conclude that MgtC is not a Mg2+ transporter and that it does not have a primary role in the survival of S. typhimurium at low pH.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenosine Triphosphatases / genetics
  • Adenosine Triphosphatases / physiology
  • Bacterial Proteins / physiology*
  • Biological Transport
  • Carrier Proteins / genetics
  • Carrier Proteins / physiology*
  • Cation Transport Proteins*
  • Cobalt / metabolism
  • Culture Media
  • Hydrogen-Ion Concentration
  • Magnesium / metabolism*
  • Nickel / metabolism
  • Salmonella typhimurium / growth & development*
  • Salmonella typhimurium / metabolism

Substances

  • Bacterial Proteins
  • Carrier Proteins
  • Cation Transport Proteins
  • Culture Media
  • Cobalt
  • Nickel
  • Adenosine Triphosphatases
  • MgtB protein, Salmonella typhimurium
  • MgtC protein, Salmonella typhimurium
  • Magnesium