Predicted topology of the N-terminal domain of the hydrophilic subunit of the mannose transporter of Escherichia coli

FEBS Lett. 1994 Mar 7;340(3):202-6. doi: 10.1016/0014-5793(94)80138-x.

Abstract

A folding topology for the homodimeric N-terminal domain (IIA, 2 x 14 kDa) of the hydrophilic subunit (IIABman) of the mannose transporter of E. coli is proposed. The prediction is based on (i) tertiary structure prediction methods, and (ii) functional properties of site-directed mutants in correlation with NMR-derived alpha/beta secondary structure data. The 3D structure profile suggested that the overall fold of IIA is similar to that of the unrelated protein, flavodoxin, which is an open-stranded parallel beta-sheet with a strand order of 5 4 3 1 2. The 3D model of IIA, constructed using the known atomic structure of flavodoxin, is consistent with the results from site-directed mutagenesis. Recently NMR results confirmed the open parallel beta-sheet with a strand order of 4 3 1 2 (residues 1-120) of our model whereas beta-strand 5 (residues 127-130) was shown to be antiparallel to beta-strand 4. The correctly predicted fold includes 90% of the monomeric subunit sequence and contains all functional sites of the IIA domain.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Bacterial Proteins / chemistry*
  • Carrier Proteins / chemistry*
  • Escherichia coli / chemistry*
  • Magnetic Resonance Spectroscopy
  • Mannose*
  • Mannose-Binding Lectins
  • Molecular Sequence Data
  • Protein Conformation
  • Sequence Homology, Amino Acid

Substances

  • Bacterial Proteins
  • Carrier Proteins
  • Mannose-Binding Lectins
  • Mannose