A brain machine interface framework for exploring proactive control of smart environments

Sci Rep. 2024 May 14;14(1):11054. doi: 10.1038/s41598-024-60280-7.

Abstract

Brain machine interfaces (BMIs) can substantially improve the quality of life of elderly or disabled people. However, performing complex action sequences with a BMI system is onerous because it requires issuing commands sequentially. Fundamentally different from this, we have designed a BMI system that reads out mental planning activity and issues commands in a proactive manner. To demonstrate this, we recorded brain activity from freely-moving monkeys performing an instructed task and decoded it with an energy-efficient, small and mobile field-programmable gate array hardware decoder triggering real-time action execution on smart devices. Core of this is an adaptive decoding algorithm that can compensate for the day-by-day neuronal signal fluctuations with minimal re-calibration effort. We show that open-loop planning-ahead control is possible using signals from primary and pre-motor areas leading to significant time-gain in the execution of action sequences. This novel approach provides, thus, a stepping stone towards improved and more humane control of different smart environments with mobile brain machine interfaces.

MeSH terms

  • Algorithms*
  • Animals
  • Brain / physiology
  • Brain-Computer Interfaces*
  • Macaca mulatta