General Synthesis and Solution Processing of Metal-Organic Framework Nanofibers

Adv Mater. 2022 Jul;34(29):e2202504. doi: 10.1002/adma.202202504. Epub 2022 Jun 12.

Abstract

By virtue of their extraordinarily high surface areas, ordered pore structures, various compositions, and rich functionality, metal-organic frameworks (MOFs) are of great interest in diverse fields such as gas separation, sensing, catalysis, energy, environment science, and biomedicine. However, the difficulty in processing MOF crystals and controlling the MOF superstructure is emerging as a critical issue in their application. Herein, it is reported that a robust template, i.e., nanofibrillated cellulose (NFC), can be used for the synthesis of MOF materials with 1D nanofiber morphology. NFC@MOF core-shell nanofibers with a uniform network structure and high aspect ratios can be prepared by use of this template. The small crystal size, flexibility, and good dispersity of the NFC@MOF nanofibers make it convenient for the macroscale assembly and solution processing of MOF materials. A proof-of-concept study is demonstrated wherein freestanding MOF nanofiber membranes represent good performance in applications of water treatment and heterogeneous catalysis reaction. This general synthesis and solution-processing strategy may herald a new era in promoting the industrial application of MOFs.

Keywords: membranes; metal-organic framework nanofibers; nanofibrillated cellulose; solution processing.