Parallel functional reduction in the mitochondria of apicomplexan parasites

Curr Biol. 2021 Jul 12;31(13):2920-2928.e4. doi: 10.1016/j.cub.2021.04.028. Epub 2021 May 10.

Abstract

Gregarines are an early-diverging lineage of apicomplexan parasites that hold many clues into the origin and evolution of the group, a remarkable transition from free-living phototrophic algae into obligate parasites of animals.1 Using single-cell transcriptomics targeting understudied lineages to complement available sequencing data, we characterized the mitochondrial metabolic repertoire across the tree of apicomplexans. In contrast to the large suite of proteins involved in aerobic respiration in well-studied parasites like Toxoplasma or Plasmodium,2 we find that gregarine trophozoites have significantly reduced energy metabolism: most lack respiratory complexes III and IV, and some lack the electron transport chains (ETCs) and tricarboxylic acid (TCA) cycle entirely. Phylogenomic analyses show that these reductions took place several times in parallel, resulting in a functional range from fully aerobic organelles to extremely reduced "mitosomes" restricted to Fe-S cluster biosynthesis. The mitochondrial genome has also been lost repeatedly: in species with severe functional reduction simply by gene loss but in one species with a complete ETC by relocating cox1 to the nuclear genome. Severe functional reduction of mitochondria is generally associated with structural reduction, resulting in small, nondescript mitochondrial-related organelles (MROs).3 By contrast, gregarines retain distinctive mitochondria with tubular cristae, even the most functionally reduced cases that also lack genes associated with cristae formation. Overall, the parallel, severe reduction of gregarine mitochondria expands the diversity of organisms that contain MROs and further emphasizes the role of parallel transitions in apicomplexan evolution.

Keywords: anaerobic; apicomplexans; electron transport chain; mitochondria; mitosomes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Energy Metabolism
  • Genome, Mitochondrial
  • Mitochondria / genetics
  • Mitochondria / metabolism*
  • Parasites / cytology*
  • Parasites / genetics
  • Parasites / metabolism*
  • Phylogeny*
  • Toxoplasma