Recent advances in understanding mitochondrial genome diversity

F1000Res. 2020 Apr 17:9:F1000 Faculty Rev-270. doi: 10.12688/f1000research.21490.1. eCollection 2020.

Abstract

Ever since its discovery, the double-stranded DNA contained in the mitochondria of eukaryotes has fascinated researchers because of its bacterial endosymbiotic origin, crucial role in encoding subunits of the respiratory complexes, compact nature, and specific inheritance mechanisms. In the last few years, high-throughput sequencing techniques have accelerated the sequencing of mitochondrial genomes (mitogenomes) and uncovered the great diversity of organizations, gene contents, and modes of replication and transcription found in living eukaryotes. Some early divergent lineages of unicellular eukaryotes retain certain synteny and gene content resembling those observed in the genomes of alphaproteobacteria (the inferred closest living group of mitochondria), whereas others adapted to anaerobic environments have drastically reduced or even lost the mitogenome. In the three main multicellular lineages of eukaryotes, mitogenomes have pursued diverse evolutionary trajectories in which different types of molecules (circular versus linear and single versus multipartite), gene structures (with or without self-splicing introns), gene contents, gene orders, genetic codes, and transfer RNA editing mechanisms have been selected. Whereas animals have evolved a rather compact mitochondrial genome between 11 and 50 Kb in length with a highly conserved gene content in bilaterians, plants exhibit large mitochondrial genomes of 66 Kb to 11.3 Mb with large intergenic repetitions prone to recombination, and fungal mitogenomes have intermediate sizes of 12 to 236 Kb.

Keywords: animal; fungi; mitochondrial genomes; plant; unicellular eukaryotes.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Evolution, Molecular*
  • Fungi / genetics
  • Genome, Mitochondrial*
  • Introns
  • Mitochondria
  • Plants / genetics
  • RNA Editing

Grants and funding

This work was partly supported by grant CGL2016-75255-C2-1-P (AEI/FEDER, UE) of the Ministerio de Economía, Industria y Competitividad, Gobierno de España (to RZ).