Nozzle-Jet-Printed Silver/Graphene Composite-Based Field-Effect Transistor Sensor for Phosphate Ion Detection

ACS Omega. 2019 May 10;4(5):8373-8380. doi: 10.1021/acsomega.9b00559. eCollection 2019 May 31.

Abstract

High concentration of dissolved phosphate ions is the main responsible factor for eutrophication of natural water bodies. Therefore, detection of phosphate ions is essential for evaluating water eutrophication. There is a need at large-scale production of real-time monitoring technology to detect phosphorus accurately. In this study, facile enzymeless phosphate ion detection is reported using a nozzle-jet-printed silver/reduced graphene oxide (Ag/rGO) composite-based field-effect transistor sensor on flexible and disposable polymer substrates. The sensor exhibits promising results in low concentration as well as real-time phosphate ion detection. The sensor shows excellent performance with a wide linear range of 0.005-6.00 mM, high sensitivity of 62.2 μA/cm2/mM, and low detection limit of 0.2 μM. This facile combined technology readily facilitates the phosphate ion detection with high performance, long-term stability, excellent reproducibility, and good selectivity in the presence of other interfering anions. The sensor fabrication method and phosphate detection technique yield low-cost, user-friendly sensing devices with less analyte consumption, which are easy to fabricate on polymer substrates on a large scale. Besides, the sensor has the capability to sense phosphate ions in real water samples, which makes it applicable in environmental monitoring.