The sequencing and interpretation of the genome obtained from a Serbian individual

PLoS One. 2018 Dec 19;13(12):e0208901. doi: 10.1371/journal.pone.0208901. eCollection 2018.

Abstract

Recent genetic studies and whole-genome sequencing projects have greatly improved our understanding of human variation and clinically actionable genetic information. Smaller ethnic populations, however, remain underrepresented in both individual and large-scale sequencing efforts and hence present an opportunity to discover new variants of biomedical and demographic significance. This report describes the sequencing and analysis of a genome obtained from an individual of Serbian origin, introducing tens of thousands of previously unknown variants to the currently available pool. Ancestry analysis places this individual in close proximity to Central and Eastern European populations; i.e., closest to Croatian, Bulgarian and Hungarian individuals and, in terms of other Europeans, furthest from Ashkenazi Jewish, Spanish, Sicilian and Baltic individuals. Our analysis confirmed gene flow between Neanderthal and ancestral pan-European populations, with similar contributions to the Serbian genome as those observed in other European groups. Finally, to assess the burden of potentially disease-causing/clinically relevant variation in the sequenced genome, we utilized manually curated genotype-phenotype association databases and variant-effect predictors. We identified several variants that have previously been associated with severe early-onset disease that is not evident in the proband, as well as putatively impactful variants that could yet prove to be clinically relevant to the proband over the next decades. The presence of numerous private and low-frequency variants, along with the observed and predicted disease-causing mutations in this genome, exemplify some of the global challenges of genome interpretation, especially in the context of under-studied ethnic groups.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Ethnicity / genetics*
  • Female
  • Genetic Predisposition to Disease*
  • Genetic Variation*
  • Genome, Human*
  • Genome-Wide Association Study
  • Humans
  • Male
  • Neanderthals / genetics
  • Serbia / ethnology

Grants and funding

This work was supported in part by the Center for Bioinformatics Research at Indiana University.