Proton-Stabilized Photochemically Reversible E/ Z Isomerization of Spiropyrans

J Phys Chem B. 2018 Jun 21;122(24):6423-6430. doi: 10.1021/acs.jpcb.8b03528. Epub 2018 Jun 11.

Abstract

Spiropyrans undergo Cspiro-O bond breaking to their ring-open protonated E-merocyanine form upon protonation and irradiation via an intermediate protonated Z-merocyanine isomer. We show that the extent of acid-induced ring opening is controlled by matching both the concentration and strength of the acid used and with strong acids full ring opening to the Z-merocyanine isomer occurs spontaneously allowing its characterization by 1H NMR spectroscopy as well as UV/vis spectroscopy, and reversible switching between Z/ E-isomerization by irradiation with UV and visible light. Under sufficiently acidic conditions, both E- and Z-isomers are thermally stable. Judicious choice of acid such that its p Ka lies between that of the E- and Z-merocyanine forms enables thermally stable switching between spiropyran and E-merocyanine forms and hence pH gating between thermally irreversible and reversible photochromic switching.