Aqueous Redox Chemistry and the Electronic Band Structure of Liquid Water

J Phys Chem Lett. 2012 Dec 6;3(23):3411-5. doi: 10.1021/jz3015293. Epub 2012 Nov 9.

Abstract

The electronic states of aqueous species can mix with the extended states of the solvent if they are close in energy to the band edges of water. Using density functional theory-based molecular dynamics simulation, we show that this is the case for OH(-) and Cl(-). The effect is, however, badly exaggerated by the generalized gradient approximation leading to systematic underestimation of redox potentials and spurious nonlinearity in the solvent reorganization. Drawing a parallel to charged defects in wide gap solid oxides, we conclude that misalignment of the valence band of water is the main source of error turning the redox levels of OH(-) and Cl(-) in resonant impurity states. On the other hand, the accuracy of energies of levels corresponding to strongly negative redox potentials is acceptable. We therefore predict that mixing of the vertical attachment level of CO2 and the unoccupied states of water is a real effect.

Keywords: density functional theory; ionization potential; solvent effect.