Copper-catalyzed hydroalkylation of terminal alkynes

J Am Chem Soc. 2015 Feb 4;137(4):1424-7. doi: 10.1021/ja5124368. Epub 2015 Jan 26.

Abstract

We have developed a copper-catalyzed hydroalkylation of terminal alkynes using alkyl triflates as coupling partners and (Me(2)HSi)(2)O as a hydride donor. The hydroalkylation proceeds with excellent anti-Markovnikov regioselectivity and provides exclusively (E)-alkenes. We have demonstrated that both alkyl- and aryl-substituted alkynes can be used as substrates, together with 1° alkyl and benzylic triflates. Finally, the transformation can be accomplished in the presence of a wide range of functional groups. Overall, the new hydroalkylation reaction allows highly efficient and diastereospecific synthesis of (E)-alkenes from readily available terminal alkynes and alkyl triflates. On the basis of a preliminary mechanistic study, we propose that the hydroalkylation reaction involves copper hydride formation, hydrocupration of an alkyne, and alkylation of an alkenyl copper intermediate.