Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex

Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14332-41. doi: 10.1073/pnas.1402773111. Epub 2014 Sep 9.

Abstract

Cognitive functions rely on the coordinated activity of neurons in many brain regions, but the interactions between cortical areas are not yet well understood. Here we investigated whether low-frequency (α) and high-frequency (γ) oscillations characterize different directions of information flow in monkey visual cortex. We recorded from all layers of the primary visual cortex (V1) and found that γ-waves are initiated in input layer 4 and propagate to the deep and superficial layers of cortex, whereas α-waves propagate in the opposite direction. Simultaneous recordings from V1 and downstream area V4 confirmed that γ- and α-waves propagate in the feedforward and feedback direction, respectively. Microstimulation in V1 elicited γ-oscillations in V4, whereas microstimulation in V4 elicited α-oscillations in V1, thus providing causal evidence for the opposite propagation of these rhythms. Furthermore, blocking NMDA receptors, thought to be involved in feedback processing, suppressed α while boosting γ. These results provide new insights into the relation between brain rhythms and cognition.

Keywords: Granger causality; attention; neuronal synchronization; perceptual organization; phase coherence.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 6-Cyano-7-nitroquinoxaline-2,3-dione / pharmacology
  • Animals
  • Electric Stimulation
  • Evoked Potentials, Visual / drug effects
  • Evoked Potentials, Visual / physiology*
  • Excitatory Amino Acid Antagonists / pharmacology
  • Feedback, Physiological / physiology*
  • Macaca
  • Neurons / physiology*
  • Photic Stimulation
  • Psychomotor Performance / physiology
  • Receptors, AMPA / antagonists & inhibitors
  • Receptors, AMPA / metabolism
  • Receptors, N-Methyl-D-Aspartate / antagonists & inhibitors
  • Receptors, N-Methyl-D-Aspartate / metabolism
  • Reward
  • Valine / analogs & derivatives
  • Valine / pharmacology
  • Visual Cortex / physiology*

Substances

  • Excitatory Amino Acid Antagonists
  • Receptors, AMPA
  • Receptors, N-Methyl-D-Aspartate
  • 6-Cyano-7-nitroquinoxaline-2,3-dione
  • 2-amino-5-phosphopentanoic acid
  • Valine