Solution structures of nanoassemblies based on pyrogallol[4]arenes

Acc Chem Res. 2014 Oct 21;47(10):3080-8. doi: 10.1021/ar500222w. Epub 2014 Sep 8.

Abstract

Nanoassemblies of hydrogen-bonded and metal-seamed pyrogallol[4]arenes have been shown to possess novel solution-phase geometries. Further, we have demonstrated that both guest encapsulation and structural rearrangements may be studied by solution-phase techniques such as small-angle neutron scattering (SANS) and diffusion NMR. Application of these techniques to pyrogallol[4]arene-based nanoassemblies has allowed (1) differentiation among spherical, ellipsoidal, toroidal, and tubular structures in solution, (2) determination of factors that control the preferred geometrical shape and size of the nanoassemblies, and (3) detection of small variations in metric dimensions distinguishing similarly and differently shaped nanoassemblies in a given solution. Indeed, we have shown that the solution-phase structure of such nanoassemblies is often quite different from what one would predict based on solid-state studies, a result in disagreement with the frequently made assumption that these assemblies have similar structures in the two phases. We instead have predicted solid-state architectures from solution-phase structures by combining the solution-phase analysis with solid-state magnetic and elemental analyses. Specifically, the iron-seamed C-methylpyrogallol[4]arene nanoassembly was found to be tubular in solution and predicted to be tubular in the solid state, but it was found to undergo a rearrangement from a tubular to spherical geometry in solution as a function of base concentration. The absence of metal within a tubular framework affects its stability in both solution and the solid state; however, this instability is not necessarily characteristic of hydrogen-bonded capsular entities. Even metal seaming of the capsules does not guarantee similar solid-state and solution-phase architectures. The rugby ball-shaped gallium-seamed C-butylpyrogallol[4]arene hexamer becomes toroidal on dissolution, as does the spherically shaped gallium/zinc-seamed C-butylpyrogallol[4]arene hexamer. However, the arenes are arranged differently in the two toroids, a variation that accounts for the differences in their sizes and guest encapsulation. Guest encapsulation of biotemplates, such as insulin, has demonstrated the feasibility of synthesizing nanocapsules with a volume three times that of a hexamer. The solution-phase studies have also demonstrated that the self-assembly of dimers versus hexamers can be controlled by the choice of metal, solvent, and temperature. Controlling the size of the host, nature of the metal, and identity of the guest will allow construction of targeted host-guest assemblies having potential uses as drug delivery agents, nanoscale reaction vessels, and radioimaging/radiotherapy agents. Overall, the present series of solid- and solution-phase studies has begun to pave the way toward a more complete understanding of the properties and behavior of complex supramolecular nanoassemblies.