Combinatorial discovery through a distributed outreach program: investigation of the photoelectrolysis activity of p-type Fe, Cr, Al oxides

ACS Appl Mater Interfaces. 2014 Jun 25;6(12):9046-52. doi: 10.1021/am406045j. Epub 2014 Apr 13.

Abstract

We report the identification of a semiconducting p-type oxide containing iron, aluminum, and chromium (Fe2-x-yCrxAlyO3) with previously unreported photoelectrolysis activity that was discovered by an undergraduate scientist participating in the Solar Hydrogen Activity research Kit (SHArK) program. The SHArK program is a distributed combinatorial science outreach program designed to provide a simple and inexpensive way for high school and undergraduate students to participate in the search for metal oxide materials that are active for the photoelectrolysis of water. The identified Fe2-x-yCrxAlyO3 photoelectrolysis material possesses many properties that make it a promising candidate for further optimization for potential application in a photoelectrolysis device. In addition to being composed of earth abundant elements, the FeCrAl oxide material has a band gap of 1.8 eV. Current-potential measurements for Fe2-x-yCrxAlyO3 showed an open circuit photovoltage of nearly 1 V; however, the absorbed photon conversion efficiency for hydrogen evolution was low (2.4 × 10(-4) at 530 nm) albeit without any deposited hydrogen evolution catalyst. X-ray diffraction of the pyrolyzed polycrystalline thin Fe2-x-yCrxAlyO3 film on fluorine-doped tin oxide substrates shows a hexagonal phase (hematite structure) and scanning electron microscope images show morphology consisting of small crystallites.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.