Discrete nanocubes as plasmonic reporters of molecular chirality

Nano Lett. 2013 Jul 10;13(7):3145-51. doi: 10.1021/nl401107g. Epub 2013 Jun 26.

Abstract

One of the most intriguing structural properties, chirality, is often exhibited by organic and bio-organic molecular constructs. Chiral spectral signatures, typically appearing in the UV range for organic materials and known as circular dichroism (CD), are widely used to probe a molecular stereometry. Such probing has an increasingly broad importance for biomedical and pharmacological fields due to synthesis/separation/detection of homochiral species, biological role of chiral organization, and structural response to environmental conditions and enantiomeric drugs. Recent theoretical and experimental works demonstrated that the CD signal from chiral organic molecules could appear in the plasmonic (typically, visible) band when they coupled with plasmonic particles. However, the magnitude of this CD signal, induced by discrete nonchiral plasmonic particles, and its native molecular analog were found to be comparable. Here we show that shaped nonchiral nanoparticles, namely, gold/silver core/shell nanocubes, can act as plasmonic reporters of chirality for attached molecules by providing a giant, 2 orders of magnitude CD enhancement in a near-visible region. Through the experimental and theoretical comparison with nanoparticles of other shapes and materials, we demonstrate a uniqueness of silver nanocube geometry for the CD enhancement. The discovered phenomenon opens novel opportunities in ultrasensitive probing of chiral molecules and for novel optical nanomaterials based on the chiral elements.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.