Heteroepitaxial growth of GaP/ZnS nanocable with superior optoelectronic response

Nano Lett. 2013 May 8;13(5):1941-7. doi: 10.1021/nl3046552. Epub 2013 Apr 16.

Abstract

We demonstrate the controlled growth of coaxial nanocables composed of GaP/ZnS core-shell structures by a facile chemical vapor deposition method. Structural analysis confirms that the cubic GaP (111) plane and wurtzite ZnS (0001) plane present close similarities in terms of hexagonal-arranged atomic configuration with small in-plane lattice mismatch, and the ZnS shell is epitaxially grown on the (100) plane of the cubic GaP core. Compared with the unitary ZnS nanobelts, the GaP/ZnS coaxial nanocables exhibit improved optoelectronic properties such as high photocurrent and excellent photocurrent stability. This approach opens up new strategy to boost the performance of ZnS-based photodetectors.