Single Pt nanowire electrode: preparation, electrochemistry, and electrocatalysis

Anal Chem. 2013 Apr 16;85(8):4135-40. doi: 10.1021/ac400331w. Epub 2013 Apr 4.

Abstract

A single Pt nanowire electrode (SPNE) was fabricated through HF etching process from Pt disk nanoelectrode and an underpotential deposition (UPD) redox replacement technique. The electrochemical experiments showed that SPNE had steady-state electrochemical responses at redox species solution and the mass transfer rates were affected by the lengths and radii of SPNEs. The prepared SPNEs were utilized to examine the oxygen-reduction reaction in a KOH solution to explore the feasibility of electrocatalytic activity of single Pt nanowire and the results showed that the electrocatalytic activity of SPNE was dependent on the surface position of single Pt nanowire: the tip end position is more active than the sidewall position. Meanwhile, the electrocatalytic activity of SPNE was related to the radius of nanowire. These observations are not only important to understand the structure-function relationship in single nanowire level but have significant implications for the synthesis and selection of novel catalysts with high efficiency used in electrochemistry, energy, bioanalysis, etc.