Environment-related properties of polyhydroxylated dibenzo-p-dioxins

Sci Total Environ. 2012 Jan 1:414:404-16. doi: 10.1016/j.scitotenv.2011.10.063. Epub 2011 Nov 25.

Abstract

Polyhydroxylated dibenzo-p-dioxins (PHODDs) are important metabolic and synthetic products of polychlorinated dibenzo-p-dioxins (PCDDs). Two types of hydrogen bonds exist in PHODD molecules: one between a hydroxyl group (HO) and an oxygen atom of the ether bond, and the other between two ortho hydroxyls of a benzene ring. By fully optimized calculation with density functional theory (DFT), their bond energies were ascertained to be approximately 9-14 kJ/mol and 15-19 kJ/mol respectively by the comparison of standard Gibbs energy of formation (Δ(f)G(θ)) between different molecules, which was experimentally verified. The two types of hydrogen bonds affect the hydrophilicity and stability of the molecules. The torsional potential of hydroxyls and the orientation making the congener most stable were obtained. The octanol-water partition coefficients (logK(ow)s) were calculated based on the group contribution method, and the standard state entropy (S(θ)), standard enthalpy (Δ(f)H(θ)) of formation and Δ(f)G(θ) were obtained from the combination of DFT calculation and isodesmic reaction for the stable PHODD congeners. The number and position of hydroxyl substitution (N(PHOS)) were employed as descriptors to establish quantitative structure-property relationship (QSPR) models. Although the hydrophilicity of PHODDs increases with the number of hydroxyl groups, it is impaired by the intramolecular hydrogen bonds. The logK(ow)s of PHODDs are much smaller than those of PCDDs, and the variation trend with the number of substituents is different. In addition, the relative stability order of PHODD congeners was theoretically proposed, which is quite different from that of PCDDs. Considering the ionization in water, first-order ionization constants of PHODDs were calculated according to the results of SMD method of Self-Consistent Reaction Field Theory (SCRF), and they were influenced by the hydrogen bonds.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Dioxins / chemistry*
  • Hydrogen Bonding
  • Hydrophobic and Hydrophilic Interactions
  • Hydroxylation
  • Models, Molecular*
  • Molecular Structure
  • Quantitative Structure-Activity Relationship*
  • Thermodynamics

Substances

  • Dioxins
  • dibenzo(1,4)dioxin