Format

Send to:

Choose Destination
See comment in PubMed Commons below
Neuroimage. 2011 May 1;56(1):78-92. doi: 10.1016/j.neuroimage.2011.02.002. Epub 2011 Feb 19.

Spectral signal space projection algorithm for frequency domain MEG and EEG denoising, whitening, and source imaging.

Author information

  • 1Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA. rrramirez@mcw.edu

Abstract

MEG and EEG data contain additive correlated noise generated by environmental and physiological sources. To suppress this type of spatially coloured noise, source estimation is often performed with spatial whitening based on a measured or estimated noise covariance matrix. However, artifacts that span relatively small noise subspaces, such as cardiac, ocular, and muscle artifacts, are often explicitly removed by a variety of denoising methods (e.g., signal space projection) before source imaging. Here, we introduce a new approach, the spectral signal space projection (S(3)P) algorithm, in which time-frequency (TF)-specific spatial projectors are designed and applied to the noisy TF-transformed data, and whitened source estimation is performed in the TF domain. The approach can be used to derive spectral variants of all linear time domain whitened source estimation algorithms. The denoised sensor and source time series are obtained by the corresponding inverse TF-transform. The method is evaluated and compared with existing subspace projection and signal separation techniques using experimental data. Altogether, S(3)P provides an expanded framework for MEG/EEG data denoising and whitened source imaging in both the time and frequency/scale domains.

Copyright © 2011 Elsevier Inc. All rights reserved.

PMID:
21315157
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk