One-dimensional semiconductor nanostructure based thin-film partial composite formed by transfer implantation for high-performance flexible and printable electronics at low temperature

ACS Nano. 2011 Jan 25;5(1):159-64. doi: 10.1021/nn102104k. Epub 2010 Dec 21.

Abstract

Having high bending stability and effective gate coupling, the one-dimensional semiconductor nanostructures (ODSNs)-based thin-film partial composite was demonstrated, and its feasibility was confirmed through fabricating the Si NW thin-film partial composite on the poly(4-vinylphenol) (PVP) layer, obtaining uniform and high-performance flexible field-effect transistors (FETs). With the thin-film partial composite optimized by controlling the key steps consisting of the two-dimensional random dispersion on the hydrophilic substrate of ODSNs and the pressure-induced transfer implantation of them into the uncured thin dielectric polymer layer, the multinanowire (NW) FET devices were simply fabricated. As the NW density increases, the on-current of NW FETs increases linearly, implying that uniform NW distribution can be obtained with random directions over the entire region of the substrate despite the simplicity of the drop-casting method. The implantation of NWs by mechanical transfer printing onto the PVP layer enhanced the gate coupling and bending stability. As a result, the enhancements of the field-effect mobility and subthreshold swing and the stable device operation up to a 2.5 mm radius bending situation were achieved without an additional top passivation.

Publication types

  • Research Support, Non-U.S. Gov't