Lead-chromium carbonyl complexes incorporated with group 8 metals: synthesis, reactivity, and theoretical calculations

Inorg Chem. 2011 Jan 17;50(2):565-75. doi: 10.1021/ic101560u. Epub 2010 Dec 13.

Abstract

The trichromium-lead complex [Pb{Cr(CO)5}3](2-) (1) was isolated from the reaction of PbCl2 and Cr(CO)6 in a KOH/MeOH solution, and the new mixed chromium-iron-lead complex [Pb{Cr(CO)5}{Fe(CO)4}2](2-) (3) was synthesized from the reaction of PbCl2 and Cr(CO)6 in a KOH/MeOH solution followed by the addition of Fe(CO)5. X-ray crystallography showed that 3 consisted of a central Pb atom bound in a trigonal-planar environment to two Fe(CO)4 and one Cr(CO)5 fragments. When complex 1 reacted with 1.5 equiv of Mn(CO)5Br, the Cr(CO)4-bridged dimeric lead-chromium carbonyl complex [Pb2Br2Cr4(CO)18](2-) (4) was produced. However, a similar reaction of 3 or the isostructural triiron-lead complex [Pb{Fe(CO)4}3](2-) (2) with Mn(CO)5Br in MeCN led to the formation of the Fe3Pb2-based trigonal-bipyramidal complexes [Fe3(CO)9{PbCr(CO)5}2](2-) (6) and [Fe3(CO)9{PbFe(CO)4}2](2-) (5), respectively. On the other hand, the Ru3Pb2-based trigonal-bipyramidal complex [Ru3(CO)9{PbCr(CO)5}2](2-) (7) was obtained directly from the reaction of PbCl2, Cr(CO)6, and Ru3(CO)12 in a KOH/MeOH solution. X-ray crystallography showed that 5 and 6 each had an Fe3Pb2 trigonal-bipyramidal core geometry, with three Fe(CO)3 groups occupying the equatorial positions and two PbFe(CO)4 or PbCr(CO)5 units in the axial positions, while 7 displayed a Ru3Pb2 trigonal-bipyramidal geometry with three equatorial Ru(CO)3 groups and two axial PbCr(CO)5 units. The complexes 3-7 were characterized spectroscopically, and their nature, formation, and electrochemistry were further examined by molecular orbital calculations at the B3LYP level of density functional theory.