A method for helical RNA global structure determination in solution using small-angle x-ray scattering and NMR measurements

J Mol Biol. 2009 Oct 30;393(3):717-34. doi: 10.1016/j.jmb.2009.08.001. Epub 2009 Aug 8.

Abstract

We report a "top-down" method that uses mainly duplexes' global orientations and overall molecular dimension and shape restraints, which were extracted from experimental NMR and small-angle X-ray scattering data, respectively, to determine global architectures of RNA molecules consisting of mostly A-form-like duplexes. The method is implemented in the G2G (from global measurement to global structure) toolkit of programs. We demonstrate the efficiency and accuracy of the method by determining the global structure of a 71-nt RNA using experimental data. The backbone root-mean-square deviation of the ensemble of the calculated global structures relative to the X-ray crystal structure is 3.0+/-0.3 A using the experimental data and is only 2.5+/-0.2 A for the three duplexes that were orientation restrained during the calculation. The global structure simplifies interpretation of multidimensional nuclear Overhauser spectra for high-resolution structure determination. The potential general application of the method for RNA structure determination is discussed.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Base Pairing
  • Databases, Nucleic Acid
  • Magnetic Resonance Spectroscopy
  • Models, Molecular
  • Nucleic Acid Conformation*
  • RNA / chemistry*
  • Scattering, Small Angle*
  • Solutions
  • X-Ray Diffraction*

Substances

  • Solutions
  • RNA