A new anisotropic soft-core model for the simulation of liquid crystal mesophases

J Chem Phys. 2008 Jan 28;128(4):044906. doi: 10.1063/1.2825292.

Abstract

A new anisotropic soft-core model is presented, which is suitable for the rapid simulation of liquid crystal mesophases. The potential is based on a soft spherocylinder, which can be easily tuned to favor different liquid crystal mesophases. The soft-core nature of the potential makes it suitable for long-time step molecular dynamics or dissipative particle dynamics simulations, particularly as a reference model for mesogens or as an anisotropic solvent for use in combination with atomistic models. Results are presented for two variants of the new potential, which show different mesophase behaviors. Variants of the potential can also be linked together to produce more complicated molecular structures. Here, as an example, results are provided for a model multipedal liquid crystal, which has eight liquid crystalline groups linked to a central core via semiflexible chains. Here, despite the complexity of molecular structure, the model succeeds in showing the spontaneous formation of a liquid crystal phase. The results also demonstrate that there is a very strong coupling between the internal structure of the multipedal mesogen and the molecular order of the phase, with the mesogen spontaneously undergoing major structural rearrangement at the transition to the liquid crystal phase.