Display Settings:


Send to:

Choose Destination
Protein Sci. 2007 Jul;16(7):1316-28.

NMR structure of a KlbA intein precursor from Methanococcus jannaschii.

Author information

  • 1The Scripps Research Institute, Department of Molecular Biology, La Jolla, CA 92037, USA.


Certain proteins of unicellular organisms are translated as precursor polypeptides containing inteins (intervening proteins), which are domains capable of performing protein splicing. These domains, in conjunction with a single residue following the intein, catalyze their own excision from the surrounding protein (extein) in a multistep reaction involving the cleavage of two intein-extein peptide bonds and the formation of a new peptide bond that ligates the two exteins to yield the mature protein. We report here the solution NMR structure of a 186-residue precursor of the KlbA intein from Methanococcus jannaschii, comprising the intein together with N- and C-extein segments of 7 and 11 residues, respectively. The intein is shown to adopt a single, well-defined globular domain, representing a HINT (Hedgehog/Intein)-type topology. Fourteen beta-strands are arranged in a complex fold that includes four beta-hairpins and an antiparallel beta-ribbon, and there is one alpha-helix, which is packed against the beta-ribbon, and one turn of 3(10)-helix in the loop between the beta-strands 8 and 9. The two extein segments show increased disorder, and form only minimal nonbonding contacts with the intein domain. Structure-based mutation experiments resulted in a proposal for functional roles of individual residues in the intein catalytic mechanism.

[PubMed - indexed for MEDLINE]
Free PMC Article

Images from this publication.See all images (4)Free text

Figure 1.
Figure 2.
Figure 3.
Figure 4.
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc. Icon for PubMed Central
    Loading ...
    Write to the Help Desk