Rosmarinic acid antagonizes activator protein-1-dependent activation of cyclooxygenase-2 expression in human cancer and nonmalignant cell lines

J Nutr. 2008 Nov;138(11):2098-105. doi: 10.3945/jn.108.090431.

Abstract

One mechanism through which bioactive food components may exert anticancer effects is by reducing the expression of the proinflammatory gene cyclooxygenase-2 (COX-2), which has been regarded as a risk factor in tumor development. Rosmarinic acid (RA) is a phenolic derivative of caffeic acid present in rosemary (Rosmarinus officinalis). Previous research documented that RA may exert antiinflammatory effects. However, the mechanisms of action of RA on COX-2 expression have not been investigated. Here, we report that in colon cancer HT-29 cells, RA (5, 10, and 20 micromol/L) reduced the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced COX-2 promoter activity (P < 0.05) and protein levels (P < 0.05). In addition, the cotreatment with RA reduced (5 micromol/L, P < 0.05; 10 and 20 micromol/L, P < 0.01) TPA-induced transcription from a control activator protein-1 (AP-1) promoter-luciferase construct and repressed binding of the AP-1 factors c-Jun (10 micromol/L; P < 0.01) and c-Fos (10 micromol/L; P < 0.05) to COX-2 promoter oligonucleotides harboring a cAMP-response element (CRE). The anti-AP1 effects of RA were also examined in a nonmalignant breast epithelial cell line (MCF10A) in which RA antagonized the stimulatory effects of TPA on COX-2 protein expression (5 micromol/L, P < 0.05; 10 and 20 micromol/L, P < 0.01), the recruitment of c-Jun and c-Fos (10 micromol/L; P < 0.01) to the COX-2/CRE oligonucleotides, and activation of the extracellular signal-regulated protein kinase-1/2 (ERK1/2) (10 micromol/L; P < 0.01), a member of the mitogen-activated protein kinase pathway. Additionally, RA antagonized ERK1/2 activation in colon HT-29 and breast MCF-7 cancer cells (10 micromol/L; P < 0.01). Thus, we propose that RA may be an effective preventative agent against COX-2 activation by AP-1-inducing agents in both cancer and nonmalignant mammary epithelial cells.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Inflammatory Agents, Non-Steroidal / pharmacology*
  • Cell Line
  • Cinnamates / pharmacology*
  • Cyclooxygenase 2 / genetics
  • Cyclooxygenase 2 / metabolism*
  • Depsides / pharmacology*
  • Enzyme Activation / drug effects*
  • Extracellular Signal-Regulated MAP Kinases / metabolism
  • Humans
  • Rosmarinic Acid
  • Transcription Factor AP-1 / metabolism*

Substances

  • Anti-Inflammatory Agents, Non-Steroidal
  • Cinnamates
  • Depsides
  • Transcription Factor AP-1
  • Cyclooxygenase 2
  • Extracellular Signal-Regulated MAP Kinases