Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Neural Comput. 1999 Feb 15;11(2):417-41.

Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources.

Author information

  • 1Computational Neurobiology Lab, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92038, USA. tewon@salk.edu.


An extension of the infomax algorithm of Bell and Sejnowski (1995) is presented that is able blindly to separate mixed signals with sub- and supergaussian source distributions. This was achieved by using a simple type of learning rule first derived by Girolami (1997) by choosing negentropy as a projection pursuit index. Parameterized probability distributions that have sub- and supergaussian regimes were used to derive a general learning rule that preserves the simple architecture proposed by Bell and Sejnowski (1995), is optimized using the natural gradient by Amari (1998), and uses the stability analysis of Cardoso and Laheld (1996) to switch between sub- and supergaussian regimes. We demonstrate that the extended infomax algorithm is able to separate 20 sources with a variety of source distributions easily. Applied to high-dimensional data from electroencephalographic recordings, it is effective at separating artifacts such as eye blinks and line noise from weaker electrical signals that arise from sources in the brain.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk